Version: | 1.7-3 |
VersionNote: | do also bump src/version.h, inst/include/Matrix/version.h |
Date: | 2025-03-05 |
Priority: | recommended |
Title: | Sparse and Dense Matrix Classes and Methods |
Description: | A rich hierarchy of sparse and dense matrix classes, including general, symmetric, triangular, and diagonal matrices with numeric, logical, or pattern entries. Efficient methods for operating on such matrices, often wrapping the 'BLAS', 'LAPACK', and 'SuiteSparse' libraries. |
License: | GPL-2 | GPL-3 | file LICENCE [expanded from: GPL (≥ 2) | file LICENCE] |
URL: | https://Matrix.R-forge.R-project.org |
BugReports: | https://R-forge.R-project.org/tracker/?atid=294&group_id=61 |
Contact: | Matrix-authors@R-project.org |
Depends: | R (≥ 4.4), methods |
Imports: | grDevices, graphics, grid, lattice, stats, utils |
Suggests: | MASS, datasets, sfsmisc, tools |
Enhances: | SparseM, graph |
LazyData: | no |
LazyDataNote: | not possible, since we use data/*.R and our S4 classes |
BuildResaveData: | no |
Encoding: | UTF-8 |
NeedsCompilation: | yes |
Packaged: | 2025-03-05 09:59:22 UTC; maechler |
Author: | Douglas Bates |
Maintainer: | Martin Maechler <mmaechler+Matrix@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2025-03-11 07:20:02 UTC |
Class "abIndex" of Abstract Index Vectors
Description
The "abIndex"
class
, short for “Abstract
Index Vector”, is used for dealing with large index vectors more
efficiently, than using integer (or numeric
) vectors of
the kind 2:1000000
or c(0:1e5, 1000:1e6)
.
Note that the current implementation details are subject to change,
and if you consider working with these classes, please contact the
package maintainers (packageDescription("Matrix")$Maintainer
).
Objects from the Class
Objects can be created by calls of the form new("abIndex", ...)
,
but more easily and typically either by as(x, "abIndex")
where
x
is an integer (valued) vector, or directly by
abIseq()
and combination c(...)
of such.
Slots
kind
:a
character
string, one of("int32", "double", "rleDiff")
, denoting the internal structure of the abIndex object.x
:Object of class
"numLike"
; is used (i.e., not of length0
) only iff the object is not compressed, i.e., currently exactly whenkind != "rleDiff"
.rleD
:
Methods
- as.numeric, as.integer, as.vector
signature(x = "abIndex")
: ...- [
signature(x = "abIndex", i = "index", j = "ANY", drop = "ANY")
: ...- coerce
signature(from = "numeric", to = "abIndex")
: ...- coerce
signature(from = "abIndex", to = "numeric")
: ...- coerce
signature(from = "abIndex", to = "integer")
: ...- length
signature(x = "abIndex")
: ...- Ops
signature(e1 = "numeric", e2 = "abIndex")
: These and the following arithmetic and logic operations are not yet implemented; seeOps
for a list of these (S4) group methods.- Ops
signature(e1 = "abIndex", e2 = "abIndex")
: ...- Ops
signature(e1 = "abIndex", e2 = "numeric")
: ...- Summary
signature(x = "abIndex")
: ...- show
("abIndex")
: simpleshow
method, building onshow(<rleDiff>)
.- is.na
("abIndex")
: works analogously to regular vectors.- is.finite, is.infinite
("abIndex")
: ditto.
Note
This is currently experimental and not yet used for our own code.
Please contact us (packageDescription("Matrix")$Maintainer
),
if you plan to make use of this class.
Partly builds on ideas and code from Jens Oehlschlaegel, as implemented (around 2008, in the GPL'ed part of) package ff.
See Also
rle
(base) which is used here;
numeric
Examples
showClass("abIndex")
ii <- c(-3:40, 20:70)
str(ai <- as(ii, "abIndex"))# note
ai # -> show() method
stopifnot(identical(-3:20,
as(abIseq1(-3,20), "vector")))
Sequence Generation of "abIndex", Abstract Index Vectors
Description
Generation of abstract index vectors, i.e., objects of class
"abIndex"
.
abIseq()
is designed to work entirely like seq
,
but producing "abIndex"
vectors.
abIseq1()
is its basic building block, where
abIseq1(n,m)
corresponds to n:m
.
c(x, ...)
will return an "abIndex"
vector, when x
is one.
Usage
abIseq1(from = 1, to = 1)
abIseq (from = 1, to = 1, by = ((to - from)/(length.out - 1)),
length.out = NULL, along.with = NULL)
## S3 method for class 'abIndex'
c(...)
Arguments
from , to |
the starting and (maximal) end value of the sequence. |
by |
number: increment of the sequence. |
length.out |
desired length of the sequence. A
non-negative number, which for |
along.with |
take the length from the length of this argument. |
... |
in general an arbitrary number of R objects; here,
when the first is an |
Value
An abstract index vector, i.e., object of class
"abIndex"
.
See Also
the class abIndex
documentation;
rep2abI()
for another constructor;
rle
(base).
Examples
stopifnot(identical(-3:20,
as(abIseq1(-3,20), "vector")))
try( ## (arithmetic) not yet implemented
abIseq(1, 50, by = 3)
)
Matrix Package Methods for Function all.equal()
Description
Methods for function all.equal()
(from R package
base) are defined for all Matrix
classes.
Methods
- target = "Matrix", current = "Matrix"
\
- target = "ANY", current = "Matrix"
\
- target = "Matrix", current = "ANY"
these three methods are simply using
all.equal.numeric
directly and work viaas.vector()
.
There are more methods, notably also for
"sparseVector"
's, see showMethods("all.equal")
.
Examples
showMethods("all.equal")
(A <- spMatrix(3,3, i= c(1:3,2:1), j=c(3:1,1:2), x = 1:5))
ex <- expand(lu. <- lu(A))
stopifnot( all.equal(as(A[lu.@p + 1L, lu.@q + 1L], "CsparseMatrix"),
lu.@L %*% lu.@U),
with(ex, all.equal(as(P %*% A %*% t(Q), "CsparseMatrix"),
L %*% U)),
with(ex, all.equal(as(A, "CsparseMatrix"),
t(P) %*% L %*% U %*% Q)))
Standardize a Sparse Matrix in Triplet Format
Description
Detect or standardize a TsparseMatrix
with
unsorted or duplicated (i,j)
pairs.
Usage
anyDuplicatedT(x, ...)
isUniqueT(x, byrow = FALSE, isT = is(x, "TsparseMatrix"))
asUniqueT(x, byrow = FALSE, isT = is(x, "TsparseMatrix"))
aggregateT(x)
Arguments
x |
an R object. |
... |
optional arguments passed to the default method for
generic function |
byrow |
a logical indicating if |
isT |
a logical indicating if |
Value
anyDuplicatedT(x)
returns the index of the first duplicated
(i,j)
pair in x
(0 if there are no duplicated pairs).
isUniqueT(x)
returns TRUE
if x
is a
TsparseMatrix
with sorted, nonduplicated
(i,j)
pairs and FALSE
otherwise.
asUniqueT(x)
returns the unique
TsparseMatrix
representation of x
with
sorted, nonduplicated (i,j)
pairs. Values corresponding to
identical (i,j)
pairs are aggregated by addition, where in the
logical case “addition” refers to logical OR.
aggregateT(x)
aggregates without sorting.
See Also
Virtual class TsparseMatrix
.
Examples
example("dgTMatrix-class", echo=FALSE)
## -> 'T2' with (i,j,x) slots of length 5 each
T2u <- asUniqueT(T2)
stopifnot(## They "are" the same (and print the same):
all.equal(T2, T2u, tol=0),
## but not internally:
anyDuplicatedT(T2) == 2,
anyDuplicatedT(T2u) == 0,
length(T2 @x) == 5,
length(T2u@x) == 3)
isUniqueT(T2 ) # FALSE
isUniqueT(T2u) # TRUE
T3 <- T2u
T3[1, c(1,3)] <- 10; T3[2, c(1,5)] <- 20
T3u <- asUniqueT(T3)
str(T3u) # sorted in 'j', and within j, sorted in i
stopifnot(isUniqueT(T3u))
## Logical l.TMatrix and n.TMatrix :
(L2 <- T2 > 0)
validObject(L2u <- asUniqueT(L2))
(N2 <- as(L2, "nMatrix"))
validObject(N2u <- asUniqueT(N2))
stopifnot(N2u@i == L2u@i, L2u@i == T2u@i, N2@i == L2@i, L2@i == T2@i,
N2u@j == L2u@j, L2u@j == T2u@j, N2@j == L2@j, L2@j == T2@j)
# now with a nasty NA [partly failed in Matrix 1.1-5]:
L.0N <- L.1N <- L2
L.0N@x[1:2] <- c(FALSE, NA)
L.1N@x[1:2] <- c(TRUE, NA)
validObject(L.0N)
validObject(L.1N)
(m.0N <- as.matrix(L.0N))
(m.1N <- as.matrix(L.1N))
stopifnot(identical(10L, which(is.na(m.0N))), !anyNA(m.1N))
symnum(m.0N)
symnum(m.1N)
Extract bands of a matrix
Description
Return the matrix obtained by setting to zero elements below a diagonal
(triu
), above a diagonal (tril
), or outside of a general
band (band
).
Usage
band(x, k1, k2, ...)
triu(x, k = 0L, ...)
tril(x, k = 0L, ...)
Arguments
x |
a matrix-like object |
k , k1 , k2 |
integers specifying the diagonals that are not set to
zero, |
... |
optional arguments passed to methods, currently unused by package Matrix. |
Details
triu(x, k)
is equivalent to band(x, k, dim(x)[2])
.
Similarly,
tril(x, k)
is equivalent to band(x, -dim(x)[1], k)
.
Value
An object of a suitable matrix class, inheriting from
triangularMatrix
where appropriate.
It inherits from sparseMatrix
if
and only if x
does.
Methods
- x = "CsparseMatrix"
method for compressed, sparse, column-oriented matrices.
- x = "RsparseMatrix"
method for compressed, sparse, row-oriented matrices.
- x = "TsparseMatrix"
method for sparse matrices in triplet format.
- x = "diagonalMatrix"
method for diagonal matrices.
- x = "denseMatrix"
method for dense matrices in packed or unpacked format.
- x = "matrix"
method for traditional matrices of implicit class
matrix
.
See Also
bandSparse
for the construction of a
banded sparse matrix directly from its non-zero diagonals.
Examples
## A random sparse matrix :
set.seed(7)
m <- matrix(0, 5, 5)
m[sample(length(m), size = 14)] <- rep(1:9, length=14)
(mm <- as(m, "CsparseMatrix"))
tril(mm) # lower triangle
tril(mm, -1) # strict lower triangle
triu(mm, 1) # strict upper triangle
band(mm, -1, 2) # general band
(m5 <- Matrix(rnorm(25), ncol = 5))
tril(m5) # lower triangle
tril(m5, -1) # strict lower triangle
triu(m5, 1) # strict upper triangle
band(m5, -1, 2) # general band
(m65 <- Matrix(rnorm(30), ncol = 5)) # not square
triu(m65) # result not "dtrMatrix" unless square
(sm5 <- crossprod(m65)) # symmetric
band(sm5, -1, 1)# "dsyMatrix": symmetric band preserves symmetry property
as(band(sm5, -1, 1), "sparseMatrix")# often preferable
(sm <- round(crossprod(triu(mm/2)))) # sparse symmetric ("dsC*")
band(sm, -1,1) # remains "dsC", *however*
band(sm, -2,1) # -> "dgC"
Construct Sparse Banded Matrix from (Sup-/Super-) Diagonals
Description
Construct a sparse banded matrix by specifying its non-zero sup- and super-diagonals.
Usage
bandSparse(n, m = n, k, diagonals, symmetric = FALSE,
repr = "C", giveCsparse = (repr == "C"))
Arguments
n , m |
the matrix dimension |
k |
integer vector of “diagonal numbers”, with identical
meaning as in |
diagonals |
optional list of sub-/super- diagonals; if missing,
the result will be a pattern matrix, i.e., inheriting from
class
|
symmetric |
logical; if true the result will be symmetric
(inheriting from class |
repr |
|
giveCsparse |
(deprecated, replaced with |
Value
a sparse matrix (of class
CsparseMatrix
) of dimension n \times m
with diagonal “bands” as specified.
See Also
band
, for extraction of matrix bands;
bdiag
, diag
,
sparseMatrix
,
Matrix
.
Examples
diags <- list(1:30, 10*(1:20), 100*(1:20))
s1 <- bandSparse(13, k = -c(0:2, 6), diag = c(diags, diags[2]), symm=TRUE)
s1
s2 <- bandSparse(13, k = c(0:2, 6), diag = c(diags, diags[2]), symm=TRUE)
stopifnot(identical(s1, t(s2)), is(s1,"dsCMatrix"))
## a pattern Matrix of *full* (sub-)diagonals:
bk <- c(0:4, 7,9)
(s3 <- bandSparse(30, k = bk, symm = TRUE))
## If you want a pattern matrix, but with "sparse"-diagonals,
## you currently need to go via logical sparse:
lLis <- lapply(list(rpois(20, 2), rpois(20, 1), rpois(20, 3))[c(1:3, 2:3, 3:2)],
as.logical)
(s4 <- bandSparse(20, k = bk, symm = TRUE, diag = lLis))
(s4. <- as(drop0(s4), "nsparseMatrix"))
n <- 1e4
bk <- c(0:5, 7,11)
bMat <- matrix(1:8, n, 8, byrow=TRUE)
bLis <- as.data.frame(bMat)
B <- bandSparse(n, k = bk, diag = bLis)
Bs <- bandSparse(n, k = bk, diag = bLis, symmetric=TRUE)
B [1:15, 1:30]
Bs[1:15, 1:30]
## can use a list *or* a matrix for specifying the diagonals:
stopifnot(identical(B, bandSparse(n, k = bk, diag = bMat)),
identical(Bs, bandSparse(n, k = bk, diag = bMat, symmetric=TRUE))
, inherits(B, "dtCMatrix") # triangular!
)
Construct a Block Diagonal Matrix
Description
Build a block diagonal matrix given several building block matrices.
Usage
bdiag(...)
.bdiag(lst)
Arguments
... |
individual matrices or a |
lst |
non-empty |
Details
For non-trivial argument list, bdiag()
calls .bdiag()
.
The latter maybe useful to programmers.
Value
A sparse matrix obtained by combining the arguments into a block diagonal matrix.
The value of bdiag()
inherits from class
CsparseMatrix
, whereas
.bdiag()
returns a TsparseMatrix
.
Note
This function has been written and is efficient for the case of relatively few block matrices which are typically sparse themselves.
It is currently inefficient for the case of many small dense
block matrices.
For the case of many dense k \times k
matrices,
the bdiag_m()
function in the ‘Examples’ is an order of
magnitude faster.
Author(s)
Martin Maechler, built on a version posted by Berton Gunter to
R-help; earlier versions have been posted by other authors, notably
Scott Chasalow to S-news. Doug Bates's faster implementation builds
on TsparseMatrix
objects.
See Also
Diagonal
for constructing matrices of
class diagonalMatrix
, or kronecker
which also works for "Matrix"
inheriting matrices.
bandSparse
constructs a banded sparse matrix from
its non-zero sub-/super - diagonals.
Note that other CRAN R packages have own versions of bdiag()
which return traditional matrices.
Examples
bdiag(matrix(1:4, 2), diag(3))
## combine "Matrix" class and traditional matrices:
bdiag(Diagonal(2), matrix(1:3, 3,4), diag(3:2))
mlist <- list(1, 2:3, diag(x=5:3), 27, cbind(1,3:6), 100:101)
bdiag(mlist)
stopifnot(identical(bdiag(mlist),
bdiag(lapply(mlist, as.matrix))))
ml <- c(as(matrix((1:24)%% 11 == 0, 6,4),"nMatrix"),
rep(list(Diagonal(2, x=TRUE)), 3))
mln <- c(ml, Diagonal(x = 1:3))
stopifnot(is(bdiag(ml), "lsparseMatrix"),
is(bdiag(mln),"dsparseMatrix") )
## random (diagonal-)block-triangular matrices:
rblockTri <- function(nb, max.ni, lambda = 3) {
.bdiag(replicate(nb, {
n <- sample.int(max.ni, 1)
tril(Matrix(rpois(n * n, lambda = lambda), n, n)) }))
}
(T4 <- rblockTri(4, 10, lambda = 1))
image(T1 <- rblockTri(12, 20))
##' Fast version of Matrix :: .bdiag() -- for the case of *many* (k x k) matrices:
##' @param lmat list(<mat1>, <mat2>, ....., <mat_N>) where each mat_j is a k x k 'matrix'
##' @return a sparse (N*k x N*k) matrix of class \code{"\linkS4class{dgCMatrix}"}.
bdiag_m <- function(lmat) {
## Copyright (C) 2016 Martin Maechler, ETH Zurich
if(!length(lmat)) return(new("dgCMatrix"))
stopifnot(is.list(lmat), is.matrix(lmat[[1]]),
(k <- (d <- dim(lmat[[1]]))[1]) == d[2], # k x k
all(vapply(lmat, dim, integer(2)) == k)) # all of them
N <- length(lmat)
if(N * k > .Machine$integer.max)
stop("resulting matrix too large; would be M x M, with M=", N*k)
M <- as.integer(N * k)
## result: an M x M matrix
new("dgCMatrix", Dim = c(M,M),
## 'i :' maybe there's a faster way (w/o matrix indexing), but elegant?
i = as.vector(matrix(0L:(M-1L), nrow=k)[, rep(seq_len(N), each=k)]),
p = k * 0L:M,
x = as.double(unlist(lmat, recursive=FALSE, use.names=FALSE)))
}
l12 <- replicate(12, matrix(rpois(16, lambda = 6.4), 4, 4),
simplify=FALSE)
dim(T12 <- bdiag_m(l12))# 48 x 48
T12[1:20, 1:20]
Boolean Arithmetic Matrix Products: %&%
and Methods
Description
For boolean or “pattern” matrices, i.e., R objects of
class nMatrix
, it is natural to allow matrix
products using boolean instead of numerical arithmetic.
In package Matrix, we use the binary operator %&%
(aka
“infix”) function) for this and provide methods for all our
matrices and the traditional R matrices (see matrix
).
Value
a pattern matrix, i.e., inheriting from "nMatrix"
,
or an "ldiMatrix"
in case of a diagonal matrix.
Methods
We provide methods for both the “traditional” (R base) matrices
and numeric vectors and conceptually all matrices and
sparseVector
s in package Matrix.
signature(x = "ANY", y = "ANY")
signature(x = "ANY", y = "Matrix")
signature(x = "Matrix", y = "ANY")
signature(x = "nMatrix", y = "nMatrix")
signature(x = "nMatrix", y = "nsparseMatrix")
signature(x = "nsparseMatrix", y = "nMatrix")
signature(x = "nsparseMatrix", y = "nsparseMatrix")
signature(x = "sparseVector", y = "sparseVector")
Note
These boolean arithmetic matrix products had been newly introduced for Matrix 1.2.0 (March 2015). Its implementation has still not been tested extensively.
Originally, it was left unspecified how non-structural zeros, i.e., 0
's
as part of the M@x
slot should be treated for numeric
("dMatrix"
) and logical ("lMatrix"
)
sparse matrices. We now specify that boolean matrix products should behave as if
applied to drop0(M)
, i.e., as if dropping such zeros from
the matrix before using it.
Equivalently, for all matrices M
, boolean arithmetic should work as if
applied to M != 0
(or M != FALSE
).
The current implementation ends up coercing both x
and y
to
(virtual) class nsparseMatrix
which may be quite inefficient
for dense matrices. A future implementation may well return a matrix
with different class, but the “same” content, i.e., the
same matrix entries m_ij
.
See Also
%*%
, crossprod()
, or tcrossprod()
,
for (regular) matrix product methods.
Examples
set.seed(7)
L <- Matrix(rnorm(20) > 1, 4,5)
(N <- as(L, "nMatrix"))
L. <- L; L.[1:2,1] <- TRUE; L.@x[1:2] <- FALSE; L. # has "zeros" to drop0()
D <- Matrix(round(rnorm(30)), 5,6) # -> values in -1:1 (for this seed)
L %&% D
stopifnot(identical(L %&% D, N %&% D),
all(L %&% D == as((L %*% abs(D)) > 0, "sparseMatrix")))
## cross products , possibly with boolArith = TRUE :
crossprod(N) # -> sparse patter'n' (TRUE/FALSE : boolean arithmetic)
crossprod(N +0) # -> numeric Matrix (with same "pattern")
stopifnot(all(crossprod(N) == t(N) %&% N),
identical(crossprod(N), crossprod(N +0, boolArith=TRUE)),
identical(crossprod(L), crossprod(N , boolArith=FALSE)))
crossprod(D, boolArith = TRUE) # pattern: "nsCMatrix"
crossprod(L, boolArith = TRUE) # ditto
crossprod(L, boolArith = FALSE) # numeric: "dsCMatrix"
Dense Bunch-Kaufman Factorizations
Description
Classes BunchKaufman
and pBunchKaufman
represent
Bunch-Kaufman factorizations of n \times n
real,
symmetric matrices A
, having the general form
A = U D_{U} U' = L D_{L} L'
where
D_{U}
and D_{L}
are symmetric, block diagonal
matrices composed of b_{U}
and b_{L}
1 \times 1
or 2 \times 2
diagonal blocks;
U = \prod_{k = 1}^{b_{U}} P_{k} U_{k}
is the product of b_{U}
row-permuted unit upper triangular
matrices, each having nonzero entries above the diagonal in 1 or 2 columns;
and
L = \prod_{k = 1}^{b_{L}} P_{k} L_{k}
is the product of b_{L}
row-permuted unit lower triangular
matrices, each having nonzero entries below the diagonal in 1 or 2 columns.
These classes store the nonzero entries of the
2 b_{U} + 1
or 2 b_{L} + 1
factors,
which are individually sparse,
in a dense format as a vector of length
nn
(BunchKaufman
) or
n(n+1)/2
(pBunchKaufman
),
the latter giving the “packed” representation.
Slots
Dim
,Dimnames
inherited from virtual class
MatrixFactorization
.uplo
a string, either
"U"
or"L"
, indicating which triangle (upper or lower) of the factorized symmetric matrix was used to compute the factorization and in turn how thex
slot is partitioned.x
a numeric vector of length
n*n
(BunchKaufman
) orn*(n+1)/2
(pBunchKaufman
), wheren=Dim[1]
. The details of the representation are specified by the manual for LAPACK routinesdsytrf
anddsptrf
.perm
an integer vector of length
n=Dim[1]
specifying row and column interchanges as described in the manual for LAPACK routinesdsytrf
anddsptrf
.
Extends
Class BunchKaufmanFactorization
, directly.
Class MatrixFactorization
, by class
BunchKaufmanFactorization
, distance 2.
Instantiation
Objects can be generated directly by calls of the form
new("BunchKaufman", ...)
or new("pBunchKaufman", ...)
,
but they are more typically obtained as the value of
BunchKaufman(x)
for x
inheriting from
dsyMatrix
or dspMatrix
.
Methods
coerce
signature(from = "BunchKaufman", to = "dtrMatrix")
: returns adtrMatrix
, useful for inspecting the internal representation of the factorization; see ‘Note’.coerce
signature(from = "pBunchKaufman", to = "dtpMatrix")
: returns adtpMatrix
, useful for inspecting the internal representation of the factorization; see ‘Note’.determinant
signature(from = "p?BunchKaufman", logarithm = "logical")
: computes the determinant of the factorized matrixA
or its logarithm.expand1
signature(x = "p?BunchKaufman")
: seeexpand1-methods
.expand2
signature(x = "p?BunchKaufman")
: seeexpand2-methods
.solve
signature(a = "p?BunchKaufman", b = .)
: seesolve-methods
.
Note
In Matrix < 1.6-0
, class BunchKaufman
extended
dtrMatrix
and class pBunchKaufman
extended
dtpMatrix
, reflecting the fact that the internal
representation of the factorization is fundamentally triangular:
there are n(n+1)/2
“parameters”, and these
can be arranged systematically to form an n \times n
triangular matrix.
Matrix 1.6-0
removed these extensions so that methods
would no longer be inherited from dtrMatrix
and dtpMatrix
.
The availability of such methods gave the wrong impression that
BunchKaufman
and pBunchKaufman
represent a (singular)
matrix, when in fact they represent an ordered set of matrix factors.
The coercions as(., "dtrMatrix")
and as(., "dtpMatrix")
are provided for users who understand the caveats.
References
The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dsytrf.f and https://netlib.org/lapack/double/dsptrf.f.
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
Class dsyMatrix
and its packed counterpart.
Generic functions BunchKaufman
,
expand1
, and expand2
.
Examples
showClass("BunchKaufman")
set.seed(1)
n <- 6L
(A <- forceSymmetric(Matrix(rnorm(n * n), n, n)))
## With dimnames, to see that they are propagated :
dimnames(A) <- rep.int(list(paste0("x", seq_len(n))), 2L)
(bk.A <- BunchKaufman(A))
str(e.bk.A <- expand2(bk.A, complete = FALSE), max.level = 2L)
str(E.bk.A <- expand2(bk.A, complete = TRUE), max.level = 2L)
## Underlying LAPACK representation
(m.bk.A <- as(bk.A, "dtrMatrix"))
stopifnot(identical(as(m.bk.A, "matrix"), `dim<-`(bk.A@x, bk.A@Dim)))
## Number of factors is 2*b+1, b <= n, which can be nontrivial ...
(b <- (length(E.bk.A) - 1L) %/% 2L)
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)
## A ~ U DU U', U := prod(Pk Uk) in floating point
stopifnot(exprs = {
identical(names(e.bk.A), c("U", "DU", "U."))
identical(e.bk.A[["U" ]], Reduce(`%*%`, E.bk.A[seq_len(b)]))
identical(e.bk.A[["U."]], t(e.bk.A[["U"]]))
ae1(A, with(e.bk.A, U %*% DU %*% U.))
})
## Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(bk.A)),
identical(solve(A, b), solve(bk.A, b)))
Methods for Bunch-Kaufman Factorization
Description
Computes the Bunch-Kaufman factorization of an n \times n
real, symmetric matrix A
, which has the general form
A = U D_{U} U' = L D_{L} L'
where
D_{U}
and D_{L}
are symmetric, block diagonal
matrices composed of b_{U}
and b_{L}
1 \times 1
or 2 \times 2
diagonal blocks;
U = \prod_{k = 1}^{b_{U}} P_{k} U_{k}
is the product of b_{U}
row-permuted unit upper triangular
matrices, each having nonzero entries above the diagonal in 1 or 2 columns;
and
L = \prod_{k = 1}^{b_{L}} P_{k} L_{k}
is the product of b_{L}
row-permuted unit lower triangular
matrices, each having nonzero entries below the diagonal in 1 or 2 columns.
Methods are built on LAPACK routines dsytrf
and dsptrf
.
Usage
BunchKaufman(x, ...)
## S4 method for signature 'dsyMatrix'
BunchKaufman(x, warnSing = TRUE, ...)
## S4 method for signature 'dspMatrix'
BunchKaufman(x, warnSing = TRUE, ...)
## S4 method for signature 'matrix'
BunchKaufman(x, uplo = "U", ...)
Arguments
x |
a finite symmetric matrix or
|
warnSing |
a logical indicating if a warning should
be signaled for singular |
uplo |
a string, either |
... |
further arguments passed to or from methods. |
Value
An object representing the factorization, inheriting from
virtual class BunchKaufmanFactorization
.
The specific class is BunchKaufman
unless
x
inherits from virtual class packedMatrix
,
in which case it is pBunchKaufman
.
References
The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dsytrf.f and https://netlib.org/lapack/double/dsptrf.f.
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
Classes BunchKaufman
and
pBunchKaufman
and their methods.
Classes dsyMatrix
and
dspMatrix
.
Generic functions expand1
and expand2
,
for constructing matrix factors from the result.
Generic functions Cholesky
, Schur
,
lu
, and qr
,
for computing other factorizations.
Examples
showMethods("BunchKaufman", inherited = FALSE)
set.seed(0)
data(CAex, package = "Matrix")
class(CAex) # dgCMatrix
isSymmetric(CAex) # symmetric, but not formally
A <- as(CAex, "symmetricMatrix")
class(A) # dsCMatrix
## Have methods for denseMatrix (unpacked and packed),
## but not yet sparseMatrix ...
## Not run:
(bk.A <- BunchKaufman(A))
## End(Not run)
(bk.A <- BunchKaufman(as(A, "unpackedMatrix")))
## A ~ U DU U' in floating point
str(e.bk.A <- expand2(bk.A), max.level = 2L)
stopifnot(all.equal(as(A, "matrix"), as(Reduce(`%*%`, e.bk.A), "matrix")))
Albers' example Matrix with "Difficult" Eigen Factorization
Description
An example of a sparse matrix for which eigen()
seemed
to be difficult, an unscaled version of this has been posted to the
web, accompanying an E-mail to R-help
(https://stat.ethz.ch/mailman/listinfo/r-help), by
Casper J Albers, Open University, UK.
Usage
data(CAex)
Format
This is a 72 \times 72
symmetric matrix with 216
non-zero entries in five bands, stored as sparse matrix of class
dgCMatrix
.
Details
Historical note (2006-03-30):
In earlier versions of R, eigen(CAex)
fell into an
infinite loop whereas eigen(CAex, EISPACK=TRUE)
had been okay.
Examples
data(CAex, package = "Matrix")
str(CAex) # of class "dgCMatrix"
image(CAex)# -> it's a simple band matrix with 5 bands
## and the eigen values are basically 1 (42 times) and 0 (30 x):
zapsmall(ev <- eigen(CAex, only.values=TRUE)$values)
## i.e., the matrix is symmetric, hence
sCA <- as(CAex, "symmetricMatrix")
## and
stopifnot(class(sCA) == "dsCMatrix",
as(sCA, "matrix") == as(CAex, "matrix"))
'cbind()' and 'rbind()' recursively built on cbind2/rbind2
Description
The base functions cbind
and rbind
are
defined for an arbitrary number of arguments and hence have the first
formal argument ...
. Now, when S4 objects are found among the arguments,
base cbind()
and rbind()
internally “dispatch”
recursively, calling cbind2
or rbind2
respectively, where these have methods defined and so should dispatch
appropriately.
cbind2()
and rbind2()
are from the
methods package, i.e., standard R, and have been provided for
binding together two matrices, where in Matrix, we have
defined methods for these and the 'Matrix'
matrices.
Usage
## cbind(..., deparse.level = 1)
## rbind(..., deparse.level = 1)
## S4 method for signature 'Matrix,Matrix'
cbind2(x, y, ...)
## S4 method for signature 'Matrix,Matrix'
rbind2(x, y, ...)
Arguments
... |
for |
deparse.level |
integer controlling the construction of labels
in the case of non-matrix-like arguments; see |
x , y |
vector- or matrix-like R objects to be bound together. |
Value
typically a ‘matrix-like’ object of a similar
class
as the first argument in ...
.
Note that sometimes by default, the result is a
sparseMatrix
if one of the arguments is (even in
the case where this is not efficient). In other cases,
the result is chosen to be sparse when there are more zero entries is
than non-zero ones (as the default sparse
in
Matrix()
).
Author(s)
Martin Maechler
See Also
Our class definition help pages mentioning cbind2()
and
rbind2()
methods:
"denseMatrix"
,
"diagonalMatrix"
,
"indMatrix"
.
Examples
(a <- matrix(c(2:1,1:2), 2,2))
(M1 <- cbind(0, rbind(a, 7))) # a traditional matrix
D <- Diagonal(2)
(M2 <- cbind(4, a, D, -1, D, 0)) # a sparse Matrix
stopifnot(validObject(M2), inherits(M2, "sparseMatrix"),
dim(M2) == c(2,9))
Sparse Cholesky Factorizations
Description
CHMfactor
is the virtual class of sparse Cholesky
factorizations of n \times n
real, symmetric
matrices A
, having the general form
P_1 A P_1' = L_1 D L_1' \overset{D_{jj} \ge 0}{=} L L'
or (equivalently)
A = P_1' L_1 D L_1' P_1 \overset{D_{jj} \ge 0}{=} P_1' L L' P_1
where
P_1
is a permutation matrix,
L_1
is a unit lower triangular matrix,
D
is a diagonal matrix, and
L = L_1 \sqrt{D}
.
The second equalities hold only for positive semidefinite A
,
for which the diagonal entries of D
are non-negative
and \sqrt{D}
is well-defined.
The implementation of class CHMfactor
is based on
CHOLMOD's C-level cholmod_factor_struct
. Virtual
subclasses CHMsimpl
and CHMsuper
separate
the simplicial and supernodal variants. These have nonvirtual
subclasses [dn]CHMsimpl
and [dn]CHMsuper
,
where prefix ‘d’ and prefix ‘n’ are reserved
for numeric and symbolic factorizations, respectively.
Usage
isLDL(x)
Arguments
x |
an object inheriting from virtual class |
Value
isLDL(x)
returns TRUE
or FALSE
:
TRUE
if x
stores the lower triangular entries
of L_1-I+D
,
FALSE
if x
stores the lower triangular entries
of L
.
Slots
Of CHMfactor
:
Dim
,Dimnames
inherited from virtual class
MatrixFactorization
.colcount
an integer vector of length
Dim[1]
giving an estimate of the number of nonzero entries in each column of the lower triangular Cholesky factor. If symbolic analysis was performed prior to factorization, then the estimate is exact.perm
a 0-based integer vector of length
Dim[1]
specifying the permutation applied to the rows and columns of the factorized matrix.perm
of length 0 is valid and equivalent to the identity permutation, implying no pivoting.type
an integer vector of length 6 specifying details of the factorization. The elements correspond to members
ordering
,is_ll
,is_super
,is_monotonic
,maxcsize
, andmaxesize
of the originalcholmod_factor_struct
. Simplicial and supernodal factorizations are distinguished byis_super
. Simplicial factorizations do not usemaxcsize
ormaxesize
. Supernodal factorizations do not useis_ll
oris_monotonic
.
Of CHMsimpl
(all unused by nCHMsimpl
):
nz
an integer vector of length
Dim[1]
giving the number of nonzero entries in each column of the lower triangular Cholesky factor. There is at least one nonzero entry in each column, because the diagonal elements of the factor are stored explicitly.p
an integer vector of length
Dim[1]+1
. Row indices of nonzero entries in columnj
of the lower triangular Cholesky factor are obtained asi[p[j]+seq_len(nz[j])]+1
.i
an integer vector of length greater than or equal to
sum(nz)
containing the row indices of nonzero entries in the lower triangular Cholesky factor. These are grouped by column and sorted within columns, but the columns themselves need not be ordered monotonically. Columns may be overallocated, i.e., the number of elements ofi
reserved for columnj
may exceednz[j]
.prv
,nxt
integer vectors of length
Dim[1]+2
indicating the order in which the columns of the lower triangular Cholesky factor are stored ini
andx
. Starting fromj <- Dim[1]+2
, the recursionj <- nxt[j+1]+1
traverses the columns in forward order and terminates whennxt[j+1] = -1
. Starting fromj <- Dim[1]+1
, the recursionj <- prv[j+1]+1
traverses the columns in backward order and terminates whenprv[j+1] = -1
.
Of dCHMsimpl
:
x
a numeric vector parallel to
i
containing the corresponding nonzero entries of the lower triangular Cholesky factorL
or (if and only iftype[2]
is 0) of the lower triangular matrixL_1-I+D
.
Of CHMsuper
:
super
,pi
,px
integer vectors of length
nsuper+1
, wherensuper
is the number of supernodes.super[j]+1
is the index of the leftmost column of supernodej
. The row indices of supernodej
are obtained ass[pi[j]+seq_len(pi[j+1]-pi[j])]+1
. The numeric entries of supernodej
are obtained asx[px[j]+seq_len(px[j+1]-px[j])]+1
(if slotx
is available).s
an integer vector of length greater than or equal to
Dim[1]
containing the row indices of the supernodes.s
may contain duplicates, but not within a supernode, where the row indices must be increasing.
Of dCHMsuper
:
x
a numeric vector of length less than or equal to
prod(Dim)
containing the numeric entries of the supernodes.
Extends
Class MatrixFactorization
, directly.
Instantiation
Objects can be generated directly by calls of the form
new("dCHMsimpl", ...)
, etc., but dCHMsimpl
and
dCHMsuper
are more typically obtained as the value of
Cholesky(x, ...)
for x
inheriting from
sparseMatrix
(often dsCMatrix
).
There is currently no API outside of calls to new
for generating nCHMsimpl
and nCHMsuper
. These
classes are vestigial and may be formally deprecated in a future
version of Matrix.
Methods
coerce
signature(from = "CHMsimpl", to = "dtCMatrix")
: returns adtCMatrix
representing the lower triangular Cholesky factorL
or the lower triangular matrixL_1-I+D
, the latter if and only iffrom@type[2]
is 0.coerce
signature(from = "CHMsuper", to = "dgCMatrix")
: returns adgCMatrix
representing the lower triangular Cholesky factorL
. Note that, for supernodes spanning two or more columns, the supernodal algorithm by design stores non-structural zeros above the main diagonal, hencedgCMatrix
is indeed more appropriate thandtCMatrix
as a coercion target.determinant
signature(from = "CHMfactor", logarithm = "logical")
: behaves according to an optional argumentsqrt
. Ifsqrt = FALSE
, then this method computes the determinant of the factorized matrixA
or its logarithm. Ifsqrt = TRUE
, then this method computes the determinant of the factorL = L_1 sqrt(D)
or its logarithm, givingNaN
for the modulus whenD
has negative diagonal elements. For backwards compatibility, the default value ofsqrt
isTRUE
, but that can be expected change in a future version of Matrix, hence defensive code will always setsqrt
(toTRUE
, if the code must remain backwards compatible with Matrix< 1.6-0
). Calls to this method not settingsqrt
may warn about the pending change. The warnings can be disabled withoptions(Matrix.warnSqrtDefault = 0)
.diag
signature(x = "CHMfactor")
: returns a numeric vector of lengthn
containing the diagonal elements ofD
, which (if they are all non-negative) are the squared diagonal elements ofL
.expand
signature(x = "CHMfactor")
: seeexpand-methods
.expand1
signature(x = "CHMsimpl")
: seeexpand1-methods
.expand1
signature(x = "CHMsuper")
: seeexpand1-methods
.expand2
signature(x = "CHMsimpl")
: seeexpand2-methods
.expand2
signature(x = "CHMsuper")
: seeexpand2-methods
.image
signature(x = "CHMfactor")
: seeimage-methods
.nnzero
signature(x = "CHMfactor")
: seennzero-methods
.solve
signature(a = "CHMfactor", b = .)
: seesolve-methods
.update
signature(object = "CHMfactor")
: returns a copy ofobject
with the same nonzero pattern but with numeric entries updated according to additional argumentsparent
andmult
, whereparent
is (coercible to) adsCMatrix
or adgCMatrix
andmult
is a numeric vector of positive length.
The numeric entries are updated with those of the Cholesky factor ofF(parent) + mult[1] * I
, i.e.,F(parent)
plusmult[1]
times the identity matrix, whereF = identity
for symmetricparent
andF = tcrossprod
for otherparent
. The nonzero pattern ofF(parent)
must match that ofS
ifobject = Cholesky(S, ...)
.updown
signature(update = ., C = ., object = "CHMfactor")
: seeupdown-methods
.
References
The CHOLMOD source code; see
https://github.com/DrTimothyAldenDavis/SuiteSparse,
notably the header file ‘CHOLMOD/Include/cholmod.h’
defining cholmod_factor_struct
.
Chen, Y., Davis, T. A., Hager, W. W., & Rajamanickam, S. (2008). Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical Software, 35(3), Article 22, 1-14. doi:10.1145/1391989.1391995
Amestoy, P. R., Davis, T. A., & Duff, I. S. (2004). Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Transactions on Mathematical Software, 17(4), 886-905. doi:10.1145/1024074.1024081
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
Class dsCMatrix
.
Generic functions Cholesky
, updown
,
expand1
and expand2
.
Examples
showClass("dCHMsimpl")
showClass("dCHMsuper")
set.seed(2)
m <- 1000L
n <- 200L
M <- rsparsematrix(m, n, 0.01)
A <- crossprod(M)
## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- rep.int(list(paste0("x", seq_len(n))), 2L)
(ch.A <- Cholesky(A)) # pivoted, by default
str(e.ch.A <- expand2(ch.A, LDL = TRUE), max.level = 2L)
str(E.ch.A <- expand2(ch.A, LDL = FALSE), max.level = 2L)
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)
## A ~ P1' L1 D L1' P1 ~ P1' L L' P1 in floating point
stopifnot(exprs = {
identical(names(e.ch.A), c("P1.", "L1", "D", "L1.", "P1"))
identical(names(E.ch.A), c("P1.", "L" , "L." , "P1"))
identical(e.ch.A[["P1"]],
new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
margin = 2L, perm = invertPerm(ch.A@perm, 0L, 1L)))
identical(e.ch.A[["P1."]], t(e.ch.A[["P1"]]))
identical(e.ch.A[["L1."]], t(e.ch.A[["L1"]]))
identical(E.ch.A[["L." ]], t(E.ch.A[["L" ]]))
identical(e.ch.A[["D"]], Diagonal(x = diag(ch.A)))
all.equal(E.ch.A[["L"]], with(e.ch.A, L1 %*% sqrt(D)))
ae1(A, with(e.ch.A, P1. %*% L1 %*% D %*% L1. %*% P1))
ae1(A, with(E.ch.A, P1. %*% L %*% L. %*% P1))
ae2(A[ch.A@perm + 1L, ch.A@perm + 1L], with(e.ch.A, L1 %*% D %*% L1.))
ae2(A[ch.A@perm + 1L, ch.A@perm + 1L], with(E.ch.A, L %*% L. ))
})
## Factorization handled as factorized matrix
## (in some cases only optionally, depending on arguments)
b <- rnorm(n)
stopifnot(identical(det(A), det(ch.A, sqrt = FALSE)),
identical(solve(A, b), solve(ch.A, b, system = "A")))
u1 <- update(ch.A, A , mult = sqrt(2))
u2 <- update(ch.A, t(M), mult = sqrt(2)) # updating with crossprod(M), not M
stopifnot(all.equal(u1, u2, tolerance = 1e-14))
Compute the Cholesky Factor of a Matrix
Description
Computes the upper triangular Cholesky factor of an
n \times n
real, symmetric, positive semidefinite
matrix A
, optionally after pivoting.
That is the factor L'
in
P_{1} A P_{1}' = L L'
or (equivalently)
A = P_{1}' L L' P_{1}
where
P_{1}
is a permutation matrix.
Methods for denseMatrix
are built on
LAPACK routines dpstrf
, dpotrf
, and dpptrf
,
The latter two do not permute rows or columns,
so that P_{1}
is an identity matrix.
Methods for sparseMatrix
are built on
CHOLMOD routines cholmod_analyze
and cholmod_factorize_p
.
Usage
chol(x, ...)
## S4 method for signature 'dsyMatrix'
chol(x, pivot = FALSE, tol = -1, ...)
## S4 method for signature 'dspMatrix'
chol(x, ...)
## S4 method for signature 'dsCMatrix'
chol(x, pivot = FALSE, ...)
## S4 method for signature 'ddiMatrix'
chol(x, ...)
## S4 method for signature 'generalMatrix'
chol(x, uplo = "U", ...)
## S4 method for signature 'triangularMatrix'
chol(x, uplo = "U", ...)
Arguments
x |
a finite, symmetric, positive
semidefinite matrix or |
pivot |
a logical indicating if the rows and columns
of |
tol |
a finite numeric tolerance,
used only if |
uplo |
a string, either |
... |
further arguments passed to or from methods. |
Details
For x
inheriting from diagonalMatrix
,
the diagonal result is computed directly and without pivoting,
i.e., bypassing CHOLMOD.
For all other x
, chol(x, pivot = value)
calls
Cholesky(x, perm = value, ...)
under the hood.
If you must know the permutation P_{1}
in addition
to the Cholesky factor L'
, then call Cholesky
directly, as the result of chol(x, pivot = TRUE)
specifies
L'
but not P_{1}
.
Value
A matrix, triangularMatrix
,
or diagonalMatrix
representing
the upper triangular Cholesky factor L'
.
The result is a traditional matrix if x
is a
traditional matrix, dense if x
is dense, and
sparse if x
is sparse.
References
The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dpstrf.f, https://netlib.org/lapack/double/dpotrf.f, and https://netlib.org/lapack/double/dpptrf.f.
The CHOLMOD source code; see
https://github.com/DrTimothyAldenDavis/SuiteSparse,
notably the header file ‘CHOLMOD/Include/cholmod.h’
defining cholmod_factor_struct
.
Chen, Y., Davis, T. A., Hager, W. W., & Rajamanickam, S. (2008). Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical Software, 35(3), Article 22, 1-14. doi:10.1145/1391989.1391995
Amestoy, P. R., Davis, T. A., & Duff, I. S. (2004). Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Transactions on Mathematical Software, 17(4), 886-905. doi:10.1145/1024074.1024081
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
The default method from base, chol
,
called for traditional matrices x
.
Generic function Cholesky
, for more flexibility
notably when computing the Cholesky factorization and
not only the factor L'
.
Examples
showMethods("chol", inherited = FALSE)
set.seed(0)
## ---- Dense ----------------------------------------------------------
## chol(x, pivot = value) wrapping Cholesky(x, perm = value)
selectMethod("chol", "dsyMatrix")
## Except in packed cases where pivoting is not yet available
selectMethod("chol", "dspMatrix")
## .... Positive definite ..............................................
(A1 <- new("dsyMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 5)))
(R1.nopivot <- chol(A1))
(R1 <- chol(A1, pivot = TRUE))
## In 2-by-2 cases, we know that the permutation is 1:2 or 2:1,
## even if in general 'chol' does not say ...
stopifnot(exprs = {
all.equal( A1 , as(crossprod(R1.nopivot), "dsyMatrix"))
all.equal(t(A1[2:1, 2:1]), as(crossprod(R1 ), "dsyMatrix"))
identical(Cholesky(A1)@perm, 2:1) # because 5 > 1
})
## .... Positive semidefinite but not positive definite ................
(A2 <- new("dpoMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 4)))
try(R2.nopivot <- chol(A2)) # fails as not positive definite
(R2 <- chol(A2, pivot = TRUE)) # returns, with a warning and ...
stopifnot(exprs = {
all.equal(t(A2[2:1, 2:1]), as(crossprod(R2), "dsyMatrix"))
identical(Cholesky(A2)@perm, 2:1) # because 4 > 1
})
## .... Not positive semidefinite ......................................
(A3 <- new("dsyMatrix", Dim = c(2L, 2L), x = c(1, 2, 2, 3)))
try(R3.nopivot <- chol(A3)) # fails as not positive definite
(R3 <- chol(A3, pivot = TRUE)) # returns, with a warning and ...
## _Not_ equal: see details and examples in help("Cholesky")
all.equal(t(A3[2:1, 2:1]), as(crossprod(R3), "dsyMatrix"))
## ---- Sparse ---------------------------------------------------------
## chol(x, pivot = value) wrapping
## Cholesky(x, perm = value, LDL = FALSE, super = FALSE)
selectMethod("chol", "dsCMatrix")
## Except in diagonal cases which are handled "directly"
selectMethod("chol", "ddiMatrix")
(A4 <- toeplitz(as(c(10, 0, 1, 0, 3), "sparseVector")))
(ch.A4.nopivot <- Cholesky(A4, perm = FALSE, LDL = FALSE, super = FALSE))
(ch.A4 <- Cholesky(A4, perm = TRUE, LDL = FALSE, super = FALSE))
(R4.nopivot <- chol(A4))
(R4 <- chol(A4, pivot = TRUE))
det4 <- det(A4)
b4 <- rnorm(5L)
x4 <- solve(A4, b4)
stopifnot(exprs = {
identical(R4.nopivot, expand1(ch.A4.nopivot, "L."))
identical(R4, expand1(ch.A4, "L."))
all.equal(A4, crossprod(R4.nopivot))
all.equal(A4[ch.A4@perm + 1L, ch.A4@perm + 1L], crossprod(R4))
all.equal(diag(R4.nopivot), sqrt(diag(ch.A4.nopivot)))
all.equal(diag(R4), sqrt(diag(ch.A4)))
all.equal(sqrt(det4), det(R4.nopivot))
all.equal(sqrt(det4), det(R4))
all.equal(det4, det(ch.A4.nopivot, sqrt = FALSE))
all.equal(det4, det(ch.A4, sqrt = FALSE))
all.equal(x4, solve(R4.nopivot, solve(t(R4.nopivot), b4)))
all.equal(x4, solve(ch.A4.nopivot, b4))
all.equal(x4, solve(ch.A4, b4))
})
Inverse from Cholesky Factor
Description
Given formally upper and lower triangular matrices
U
and L
, compute (U' U)^{-1}
and (L L')^{-1}
, respectively.
This function can be seen as way to compute the inverse of a
symmetric positive definite matrix given its Cholesky factor.
Equivalently, it can be seen as a way to compute
(X' X)^{-1}
given the R
part of the
QR factorization of X
, if R
is constrained to have
positive diagonal entries.
Usage
chol2inv(x, ...)
## S4 method for signature 'dtrMatrix'
chol2inv(x, ...)
## S4 method for signature 'dtCMatrix'
chol2inv(x, ...)
## S4 method for signature 'generalMatrix'
chol2inv(x, uplo = "U", ...)
Arguments
x |
a square matrix or |
uplo |
a string, either |
... |
further arguments passed to or from methods. |
Value
A matrix, symmetricMatrix
,
or diagonalMatrix
representing
the inverse of the positive definite matrix whose
Cholesky factor is x
.
The result is a traditional matrix if x
is a
traditional matrix, dense if x
is dense, and
sparse if x
is sparse.
See Also
The default method from base, chol2inv
,
called for traditional matrices x
.
Generic function chol
, for computing the upper
triangular Cholesky factor L'
of a symmetric positive
semidefinite matrix.
Generic function solve
, for solving linear systems
and (as a corollary) for computing inverses more generally.
Examples
(A <- Matrix(cbind(c(1, 1, 1), c(1, 2, 4), c(1, 4, 16))))
(R <- chol(A))
(L <- t(R))
(R2i <- chol2inv(R))
(L2i <- chol2inv(R))
stopifnot(exprs = {
all.equal(R2i, tcrossprod(solve(R)))
all.equal(L2i, crossprod(solve(L)))
all.equal(as(R2i %*% A, "matrix"), diag(3L)) # the identity
all.equal(as(L2i %*% A, "matrix"), diag(3L)) # ditto
})
Dense Cholesky Factorizations
Description
Classes Cholesky
and pCholesky
represent
dense, pivoted Cholesky factorizations of n \times n
real, symmetric, positive semidefinite matrices A
,
having the general form
P_{1} A P_{1}' = L_{1} D L_{1}' = L L'
or (equivalently)
A = P_{1}' L_{1} D L_{1}' P_{1} = P_{1}' L L' P_{1}
where
P_{1}
is a permutation matrix,
L_{1}
is a unit lower triangular matrix,
D
is a non-negative diagonal matrix, and
L = L_{1} \sqrt{D}
.
These classes store the entries of the Cholesky factor
L
or its transpose L'
in a dense format as
a vector of length nn
(Cholesky
) or
n(n+1)/2
(pCholesky
), the latter
giving the “packed” representation.
Slots
Dim
,Dimnames
inherited from virtual class
MatrixFactorization
.uplo
a string, either
"U"
or"L"
, indicating which triangle (upper or lower) of the factorized symmetric matrix was used to compute the factorization and in turn whetherx
storesL'
orL
.x
a numeric vector of length
n*n
(Cholesky
) orn*(n+1)/2
(pCholesky
), wheren=Dim[1]
, listing the entries of the Cholesky factorL
or its transposeL'
in column-major order.perm
a 1-based integer vector of length
Dim[1]
specifying the permutation applied to the rows and columns of the factorized matrix.perm
of length 0 is valid and equivalent to the identity permutation, implying no pivoting.
Extends
Class CholeskyFactorization
, directly.
Class MatrixFactorization
, by class
CholeskyFactorization
, distance 2.
Instantiation
Objects can be generated directly by calls of the form
new("Cholesky", ...)
or new("pCholesky", ...)
,
but they are more typically obtained as the value of
Cholesky(x)
for x
inheriting from
dsyMatrix
or dspMatrix
(often the subclasses of those reserved for positive
semidefinite matrices, namely dpoMatrix
and dppMatrix
).
Methods
coerce
signature(from = "Cholesky", to = "dtrMatrix")
: returns adtrMatrix
representing the Cholesky factorL
or its transposeL'
; see ‘Note’.coerce
signature(from = "pCholesky", to = "dtpMatrix")
: returns adtpMatrix
representing the Cholesky factorL
or its transposeL'
; see ‘Note’.determinant
signature(from = "p?Cholesky", logarithm = "logical")
: computes the determinant of the factorized matrixA
or its logarithm.diag
signature(x = "p?Cholesky")
: returns a numeric vector of lengthn
containing the diagonal elements ofD
, which are the squared diagonal elements ofL
.expand1
signature(x = "p?Cholesky")
: seeexpand1-methods
.expand2
signature(x = "p?Cholesky")
: seeexpand2-methods
.solve
signature(a = "p?Cholesky", b = .)
: seesolve-methods
.
Note
In Matrix < 1.6-0
, class Cholesky
extended
dtrMatrix
and class pCholesky
extended
dtpMatrix
, reflecting the fact that the factor
L
is indeed a triangular matrix.
Matrix 1.6-0
removed these extensions so that methods
would no longer be inherited from dtrMatrix
and dtpMatrix
.
The availability of such methods gave the wrong impression that
Cholesky
and pCholesky
represent a (singular)
matrix, when in fact they represent an ordered set of matrix factors.
The coercions as(., "dtrMatrix")
and as(., "dtpMatrix")
are provided for users who understand the caveats.
References
The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dpstrf.f, https://netlib.org/lapack/double/dpotrf.f, and https://netlib.org/lapack/double/dpptrf.f.
Lucas, C. (2004). LAPACK-style codes for level 2 and 3 pivoted Cholesky factorizations. LAPACK Working Note, Number 161. https://www.netlib.org/lapack/lawnspdf/lawn161.pdf
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
Class CHMfactor
for sparse Cholesky factorizations.
Classes dpoMatrix
and dppMatrix
.
Generic functions Cholesky
,
expand1
and expand2
.
Examples
showClass("Cholesky")
set.seed(1)
m <- 30L
n <- 6L
(A <- crossprod(Matrix(rnorm(m * n), m, n)))
## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- rep.int(list(paste0("x", seq_len(n))), 2L)
(ch.A <- Cholesky(A)) # pivoted, by default
str(e.ch.A <- expand2(ch.A, LDL = TRUE), max.level = 2L)
str(E.ch.A <- expand2(ch.A, LDL = FALSE), max.level = 2L)
## Underlying LAPACK representation
(m.ch.A <- as(ch.A, "dtrMatrix")) # which is L', not L, because
A@uplo == "U"
stopifnot(identical(as(m.ch.A, "matrix"), `dim<-`(ch.A@x, ch.A@Dim)))
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)
## A ~ P1' L1 D L1' P1 ~ P1' L L' P1 in floating point
stopifnot(exprs = {
identical(names(e.ch.A), c("P1.", "L1", "D", "L1.", "P1"))
identical(names(E.ch.A), c("P1.", "L" , "L." , "P1"))
identical(e.ch.A[["P1"]],
new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
margin = 2L, perm = invertPerm(ch.A@perm)))
identical(e.ch.A[["P1."]], t(e.ch.A[["P1"]]))
identical(e.ch.A[["L1."]], t(e.ch.A[["L1"]]))
identical(E.ch.A[["L." ]], t(E.ch.A[["L" ]]))
identical(e.ch.A[["D"]], Diagonal(x = diag(ch.A)))
all.equal(E.ch.A[["L"]], with(e.ch.A, L1 %*% sqrt(D)))
ae1(A, with(e.ch.A, P1. %*% L1 %*% D %*% L1. %*% P1))
ae1(A, with(E.ch.A, P1. %*% L %*% L. %*% P1))
ae2(A[ch.A@perm, ch.A@perm], with(e.ch.A, L1 %*% D %*% L1.))
ae2(A[ch.A@perm, ch.A@perm], with(E.ch.A, L %*% L. ))
})
## Factorization handled as factorized matrix
b <- rnorm(n)
all.equal(det(A), det(ch.A), tolerance = 0)
all.equal(solve(A, b), solve(ch.A, b), tolerance = 0)
## For identical results, we need the _unpivoted_ factorization
## computed by det(A) and solve(A, b)
(ch.A.nopivot <- Cholesky(A, perm = FALSE))
stopifnot(identical(det(A), det(ch.A.nopivot)),
identical(solve(A, b), solve(ch.A.nopivot, b)))
Methods for Cholesky Factorization
Description
Computes the pivoted Cholesky factorization of an
n \times n
real, symmetric matrix A
,
which has the general form
P_1 A P_1' = L_1 D L_1' \overset{D_{jj} \ge 0}{=} L L'
or (equivalently)
A = P_1' L_1 D L_1' P_1 \overset{D_{jj} \ge 0}{=} P_1' L L' P_1
where
P_1
is a permutation matrix,
L_1
is a unit lower triangular matrix,
D
is a diagonal matrix, and
L = L_1 \sqrt{D}
.
The second equalities hold only for positive semidefinite A
,
for which the diagonal entries of D
are non-negative
and \sqrt{D}
is well-defined.
Methods for denseMatrix
are built on
LAPACK routines dpstrf
, dpotrf
, and dpptrf
.
The latter two do not permute rows or columns,
so that P_1
is an identity matrix.
Methods for sparseMatrix
are built on
CHOLMOD routines cholmod_analyze
and cholmod_factorize_p
.
Usage
Cholesky(A, ...)
## S4 method for signature 'dsyMatrix'
Cholesky(A, perm = TRUE, tol = -1, ...)
## S4 method for signature 'dspMatrix'
Cholesky(A, ...)
## S4 method for signature 'dsCMatrix'
Cholesky(A, perm = TRUE, LDL = !super, super = FALSE,
Imult = 0, ...)
## S4 method for signature 'ddiMatrix'
Cholesky(A, ...)
## S4 method for signature 'generalMatrix'
Cholesky(A, uplo = "U", ...)
## S4 method for signature 'triangularMatrix'
Cholesky(A, uplo = "U", ...)
## S4 method for signature 'matrix'
Cholesky(A, uplo = "U", ...)
Arguments
A |
a finite, symmetric matrix or
|
perm |
a logical indicating if the rows and columns
of |
tol |
a finite numeric tolerance,
used only if |
LDL |
a logical indicating if the simplicial factorization
should be computed as
|
super |
a logical indicating if the factorization should
use the supernodal algorithm. The alternative is the simplicial
algorithm. Setting |
Imult |
a finite number. The matrix
that is factorized is |
uplo |
a string, either |
... |
further arguments passed to or from methods. |
Details
Note that the result of a call to Cholesky
inherits
from CholeskyFactorization
but not
Matrix
. Users who just want a matrix
should consider using chol
, whose methods are
simple wrappers around Cholesky
returning just the
upper triangular Cholesky factor L'
,
typically as a triangularMatrix
.
However, a more principled approach would be to construct
factors as needed from the CholeskyFactorization
object,
e.g., with expand1(x, "L")
, if x
is the
object.
The behaviour of Cholesky(A, perm = TRUE)
for dense A
is somewhat exceptional, in that it expects without checking
that A
is positive semidefinite. By construction, if A
is positive semidefinite and the exact algorithm encounters a zero
pivot, then the unfactorized trailing submatrix is the zero matrix,
and there is nothing left to do. Hence when the finite precision
algorithm encounters a pivot less than tol
, it signals a
warning instead of an error and zeros the trailing submatrix in
order to guarantee that P' L L' P
is positive
semidefinite even if A
is not. It follows that one way to
test for positive semidefiniteness of A
in the event of a
warning is to analyze the error
\frac{\lVert A - P' L L' P \rVert}{\lVert A \rVert}\,.
See the examples and LAPACK Working Note (“LAWN”) 161 for details.
Value
An object representing the factorization, inheriting from
virtual class CholeskyFactorization
.
For a traditional matrix A
, the specific class is
Cholesky
.
For A
inheriting from
unpackedMatrix
,
packedMatrix
, and
sparseMatrix
,
the specific class is
Cholesky
,
pCholesky
, and
dCHMsimpl
or dCHMsuper
,
respectively.
References
The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dpstrf.f, https://netlib.org/lapack/double/dpotrf.f, and https://netlib.org/lapack/double/dpptrf.f.
The CHOLMOD source code; see
https://github.com/DrTimothyAldenDavis/SuiteSparse,
notably the header file ‘CHOLMOD/Include/cholmod.h’
defining cholmod_factor_struct
.
Lucas, C. (2004). LAPACK-style codes for level 2 and 3 pivoted Cholesky factorizations. LAPACK Working Note, Number 161. https://www.netlib.org/lapack/lawnspdf/lawn161.pdf
Chen, Y., Davis, T. A., Hager, W. W., & Rajamanickam, S. (2008). Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Transactions on Mathematical Software, 35(3), Article 22, 1-14. doi:10.1145/1391989.1391995
Amestoy, P. R., Davis, T. A., & Duff, I. S. (2004). Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Transactions on Mathematical Software, 17(4), 886-905. doi:10.1145/1024074.1024081
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
Classes Cholesky
, pCholesky
,
dCHMsimpl
and dCHMsuper
and their methods.
Classes dpoMatrix
, dppMatrix
,
and dsCMatrix
.
Generic function chol
,
for obtaining the upper triangular Cholesky factor L'
as a
matrix or Matrix
.
Generic functions expand1
and expand2
,
for constructing matrix factors from the result.
Generic functions BunchKaufman
, Schur
,
lu
, and qr
,
for computing other factorizations.
Examples
showMethods("Cholesky", inherited = FALSE)
set.seed(0)
## ---- Dense ----------------------------------------------------------
## .... Positive definite ..............................................
n <- 6L
(A1 <- crossprod(Matrix(rnorm(n * n), n, n)))
(ch.A1.nopivot <- Cholesky(A1, perm = FALSE))
(ch.A1 <- Cholesky(A1))
stopifnot(exprs = {
length(ch.A1@perm) == ncol(A1)
isPerm(ch.A1@perm)
is.unsorted(ch.A1@perm) # typically not the identity permutation
length(ch.A1.nopivot@perm) == 0L
})
## A ~ P1' L D L' P1 ~ P1' L L' P1 in floating point
str(e.ch.A1 <- expand2(ch.A1, LDL = TRUE), max.level = 2L)
str(E.ch.A1 <- expand2(ch.A1, LDL = FALSE), max.level = 2L)
stopifnot(exprs = {
all.equal(as(A1, "matrix"), as(Reduce(`%*%`, e.ch.A1), "matrix"))
all.equal(as(A1, "matrix"), as(Reduce(`%*%`, E.ch.A1), "matrix"))
})
## .... Positive semidefinite but not positive definite ................
A2 <- A1
A2[1L, ] <- A2[, 1L] <- 0
A2
try(Cholesky(A2, perm = FALSE)) # fails as not positive definite
ch.A2 <- Cholesky(A2) # returns, with a warning and ...
A2.hat <- Reduce(`%*%`, expand2(ch.A2, LDL = FALSE))
norm(A2 - A2.hat, "2") / norm(A2, "2") # 7.670858e-17
## .... Not positive semidefinite ......................................
A3 <- A1
A3[1L, ] <- A3[, 1L] <- -1
A3
try(Cholesky(A3, perm = FALSE)) # fails as not positive definite
ch.A3 <- Cholesky(A3) # returns, with a warning and ...
A3.hat <- Reduce(`%*%`, expand2(ch.A3, LDL = FALSE))
norm(A3 - A3.hat, "2") / norm(A3, "2") # 1.781568
## Indeed, 'A3' is not positive semidefinite, but 'A3.hat' _is_
ch.A3.hat <- Cholesky(A3.hat)
A3.hat.hat <- Reduce(`%*%`, expand2(ch.A3.hat, LDL = FALSE))
norm(A3.hat - A3.hat.hat, "2") / norm(A3.hat, "2") # 1.777944e-16
## ---- Sparse ---------------------------------------------------------
## Really just three cases modulo permutation :
##
## type factorization minors of P1 A P1'
## 1 simplicial P1 A P1' = L1 D L1' nonzero
## 2 simplicial P1 A P1' = L L ' positive
## 3 supernodal P1 A P2' = L L ' positive
data(KNex, package = "Matrix")
A4 <- crossprod(KNex[["mm"]])
ch.A4 <-
list(pivoted =
list(simpl1 = Cholesky(A4, perm = TRUE, super = FALSE, LDL = TRUE),
simpl0 = Cholesky(A4, perm = TRUE, super = FALSE, LDL = FALSE),
super0 = Cholesky(A4, perm = TRUE, super = TRUE )),
unpivoted =
list(simpl1 = Cholesky(A4, perm = FALSE, super = FALSE, LDL = TRUE),
simpl0 = Cholesky(A4, perm = FALSE, super = FALSE, LDL = FALSE),
super0 = Cholesky(A4, perm = FALSE, super = TRUE )))
ch.A4
s <- simplify2array
rapply2 <- function(object, f, ...) rapply(object, f, , , how = "list", ...)
s(rapply2(ch.A4, isLDL))
s(m.ch.A4 <- rapply2(ch.A4, expand1, "L")) # giving L = L1 sqrt(D)
## By design, the pivoted and simplicial factorizations
## are more sparse than the unpivoted and supernodal ones ...
s(rapply2(m.ch.A4, object.size))
## Which is nicely visualized by lattice-based methods for 'image'
inm <- c("pivoted", "unpivoted")
jnm <- c("simpl1", "simpl0", "super0")
for(i in 1:2)
for(j in 1:3)
print(image(m.ch.A4[[c(i, j)]], main = paste(inm[i], jnm[j])),
split = c(j, i, 3L, 2L), more = i * j < 6L)
simpl1 <- ch.A4[[c("pivoted", "simpl1")]]
stopifnot(exprs = {
length(simpl1@perm) == ncol(A4)
isPerm(simpl1@perm, 0L)
is.unsorted(simpl1@perm) # typically not the identity permutation
})
## One can expand with and without D regardless of isLDL(.),
## but "without" requires L = L1 sqrt(D), which is conditional
## on min(diag(D)) >= 0, hence "with" is the default
isLDL(simpl1)
stopifnot(min(diag(simpl1)) >= 0)
str(e.ch.A4 <- expand2(simpl1, LDL = TRUE), max.level = 2L) # default
str(E.ch.A4 <- expand2(simpl1, LDL = FALSE), max.level = 2L)
stopifnot(exprs = {
all.equal(E.ch.A4[["L" ]], e.ch.A4[["L1" ]] %*% sqrt(e.ch.A4[["D"]]))
all.equal(E.ch.A4[["L."]], sqrt(e.ch.A4[["D"]]) %*% e.ch.A4[["L1."]])
all.equal(A4, as(Reduce(`%*%`, e.ch.A4), "symmetricMatrix"))
all.equal(A4, as(Reduce(`%*%`, E.ch.A4), "symmetricMatrix"))
})
## The "same" permutation matrix with "alternate" representation
## [i, perm[i]] {margin=1} <-> [invertPerm(perm)[j], j] {margin=2}
alt <- function(P) {
P@margin <- 1L + !(P@margin - 1L) # 1 <-> 2
P@perm <- invertPerm(P@perm)
P
}
## Expansions are elegant but inefficient (transposes are redundant)
## hence programmers should consider methods for 'expand1' and 'diag'
stopifnot(exprs = {
identical(expand1(simpl1, "P1"), alt(e.ch.A4[["P1"]]))
identical(expand1(simpl1, "L"), E.ch.A4[["L"]])
identical(Diagonal(x = diag(simpl1)), e.ch.A4[["D"]])
})
## chol(A, pivot = value) is a simple wrapper around
## Cholesky(A, perm = value, LDL = FALSE, super = FALSE),
## returning L' = sqrt(D) L1' _but_ giving no information
## about the permutation P1
selectMethod("chol", "dsCMatrix")
stopifnot(all.equal(chol(A4, pivot = TRUE), E.ch.A4[["L."]]))
## Now a symmetric matrix with positive _and_ negative eigenvalues,
## hence _not_ positive semidefinite
A5 <- new("dsCMatrix",
Dim = c(7L, 7L),
p = c(0:1, 3L, 6:7, 10:11, 15L),
i = c(0L, 0:1, 0:3, 2:5, 3:6),
x = c(1, 6, 38, 10, 60, 103, -4, 6, -32, -247, -2, -16, -128, -2, -67))
(ev <- eigen(A5, only.values = TRUE)$values)
(t.ev <- table(factor(sign(ev), -1:1))) # the matrix "inertia"
ch.A5 <- Cholesky(A5)
isLDL(ch.A5)
(d.A5 <- diag(ch.A5)) # diag(D) is partly negative
## Sylvester's law of inertia holds here, but not in general
## in finite precision arithmetic
stopifnot(identical(table(factor(sign(d.A5), -1:1)), t.ev))
try(expand1(ch.A5, "L")) # unable to compute L = L1 sqrt(D)
try(expand2(ch.A5, LDL = FALSE)) # ditto
try(chol(A5, pivot = TRUE)) # ditto
## The default expansion is "square root free" and still works here
str(e.ch.A5 <- expand2(ch.A5, LDL = TRUE), max.level = 2L)
stopifnot(all.equal(A5, as(Reduce(`%*%`, e.ch.A5), "symmetricMatrix")))
## Version of the SuiteSparse library, which includes CHOLMOD
Mv <- Matrix.Version()
Mv[["suitesparse"]]
Conversions "graph" <–> (sparse) Matrix
Description
Since 2005, package Matrix has supported coercions to and
from class graph
from package
graph.
Since 2013, this functionality has been exposed via functions
T2graph
and graph2T
, which, unlike methods for
as(from, "<Class>")
, support optional arguments.
Usage
graph2T(from, use.weights = )
T2graph(from, need.uniq = !isUniqueT(from), edgemode = NULL)
Arguments
from |
for |
use.weights |
logical indicating if weights should be used, i.e.,
equivalently the result will be numeric, i.e. of class
|
need.uniq |
a logical indicating if |
edgemode |
one of |
Value
For graph2T()
, a sparse matrix inheriting from
"TsparseMatrix"
.
For T2graph()
an R object of class "graph"
.
See Also
Package igraph, which provides similar coercions
to and from its class igraph
via functions
graph_from_adjacency_matrix
and as_adjacency_matrix
.
Examples
if(requireNamespace("graph")) {
n4 <- LETTERS[1:4]; dns <- list(n4,n4)
show(a1 <- sparseMatrix(i= c(1:4), j=c(2:4,1), x = 2, dimnames=dns))
show(g1 <- as(a1, "graph")) # directed
unlist(graph::edgeWeights(g1)) # all '2'
show(a2 <- sparseMatrix(i= c(1:4,4), j=c(2:4,1:2), x = TRUE, dimnames=dns))
show(g2 <- as(a2, "graph")) # directed
# now if you want it undirected:
show(g3 <- T2graph(as(a2,"TsparseMatrix"), edgemode="undirected"))
show(m3 <- as(g3,"Matrix"))
show( graph2T(g3) ) # a "pattern Matrix" (nsTMatrix)
a. <- sparseMatrix(i=4:1, j=1:4, dimnames=list(n4, n4), repr="T") # no 'x'
show(a.) # "ngTMatrix"
show(g. <- as(a., "graph"))
}
Sparse Matrix Coercion from and to those from package SparseM
Description
Methods for coercion from and to sparse matrices from package SparseM
are provided here, for ease of porting functionality to the
Matrix package, and comparing functionality of the two
packages. All these work via the usual as(., "<class>")
coercion,
as(from, Class)
Methods
- from = "matrix.csr", to = "dgRMatrix"
...
- from = "matrix.csc", to = "dgCMatrix"
...
- from = "matrix.coo", to = "dgTMatrix"
...
- from = "dgRMatrix", to = "matrix.csr"
...
- from = "dgCMatrix", to = "matrix.csc"
...
- from = "dgTMatrix", to = "matrix.coo"
...
- from = "Matrix", to = "matrix.csr"
...
- from = "matrix.csr", to = "dgCMatrix"
...
- from = "matrix.coo", to = "dgCMatrix"
...
- from = "matrix.csr", to = "Matrix"
...
- from = "matrix.csc", to = "Matrix"
...
- from = "matrix.coo", to = "Matrix"
...
See Also
The documentation in CRAN package SparseM, such as
SparseM.ontology
, and one important class,
matrix.csr
.
Form Row and Column Sums and Means
Description
Form row and column sums and means for
objects, for sparseMatrix
the result may
optionally be sparse (sparseVector
), too.
Row or column names are kept respectively as for base matrices
and colSums
methods, when the result is
numeric
vector.
Usage
colSums(x, na.rm = FALSE, dims = 1L, ...)
rowSums(x, na.rm = FALSE, dims = 1L, ...)
colMeans(x, na.rm = FALSE, dims = 1L, ...)
rowMeans(x, na.rm = FALSE, dims = 1L, ...)
## S4 method for signature 'CsparseMatrix'
colSums(x, na.rm = FALSE, dims = 1L,
sparseResult = FALSE, ...)
## S4 method for signature 'CsparseMatrix'
rowSums(x, na.rm = FALSE, dims = 1L,
sparseResult = FALSE, ...)
## S4 method for signature 'CsparseMatrix'
colMeans(x, na.rm = FALSE, dims = 1L,
sparseResult = FALSE, ...)
## S4 method for signature 'CsparseMatrix'
rowMeans(x, na.rm = FALSE, dims = 1L,
sparseResult = FALSE, ...)
Arguments
x |
a Matrix, i.e., inheriting from |
na.rm |
logical. Should missing values (including |
dims |
completely ignored by the |
... |
potentially further arguments, for method |
sparseResult |
logical indicating if the result should be sparse,
i.e., inheriting from class |
Value
returns a numeric vector if sparseResult
is FALSE
as per
default. Otherwise, returns a sparseVector
.
dimnames(x)
are only kept (as names(v)
)
when the resulting v
is numeric
, since
sparseVector
s do not have names.
See Also
colSums
and the
sparseVector
classes.
Examples
(M <- bdiag(Diagonal(2), matrix(1:3, 3,4), diag(3:2))) # 7 x 8
colSums(M)
d <- Diagonal(10, c(0,0,10,0,2,rep(0,5)))
MM <- kronecker(d, M)
dim(MM) # 70 80
length(MM@x) # 160, but many are '0' ; drop those:
MM <- drop0(MM)
length(MM@x) # 32
cm <- colSums(MM)
(scm <- colSums(MM, sparseResult = TRUE))
stopifnot(is(scm, "sparseVector"),
identical(cm, as.numeric(scm)))
rowSums (MM, sparseResult = TRUE) # 14 of 70 are not zero
colMeans(MM, sparseResult = TRUE) # 16 of 80 are not zero
## Since we have no 'NA's, these two are equivalent :
stopifnot(identical(rowMeans(MM, sparseResult = TRUE),
rowMeans(MM, sparseResult = TRUE, na.rm = TRUE)),
rowMeans(Diagonal(16)) == 1/16,
colSums(Diagonal(7)) == 1)
## dimnames(x) --> names( <value> ) :
dimnames(M) <- list(paste0("r", 1:7), paste0("V",1:8))
M
colSums(M)
rowMeans(M)
## Assertions :
stopifnot(exprs = {
all.equal(colSums(M),
structure(c(1,1,6,6,6,6,3,2), names = colnames(M)))
all.equal(rowMeans(M),
structure(c(1,1,4,8,12,3,2)/8, names = paste0("r", 1:7)))
})
Compute Approximate CONDition number and 1-Norm of (Large) Matrices
Description
“Estimate”, i.e. compute approximately the CONDition number of
a (potentially large, often sparse) matrix A
.
It works by apply a fast randomized approximation of the 1-norm,
norm(A,"1")
, through onenormest(.)
.
Usage
condest(A, t = min(n, 5), normA = norm(A, "1"),
silent = FALSE, quiet = TRUE)
onenormest(A, t = min(n, 5), A.x, At.x, n,
silent = FALSE, quiet = silent,
iter.max = 10, eps = 4 * .Machine$double.eps)
Arguments
A |
a square matrix, optional for |
t |
number of columns to use in the iterations. |
normA |
number; (an estimate of) the 1-norm of |
silent |
logical indicating if warning and (by default) convergence messages should be displayed. |
quiet |
logical indicating if convergence messages should be displayed. |
A.x , At.x |
when |
n |
|
iter.max |
maximal number of iterations for the 1-norm estimator. |
eps |
the relative change that is deemed irrelevant. |
Details
condest()
calls lu(A)
, and subsequently
onenormest(A.x = , At.x = )
to compute an approximate norm of
the inverse of A
, A^{-1}
, in a way which
keeps using sparse matrices efficiently when A
is sparse.
Note that onenormest()
uses random vectors and hence
both functions' results are random, i.e., depend on the random
seed, see, e.g., set.seed()
.
Value
Both functions return a list
;
condest()
with components,
est |
a number |
v |
the maximal |
The function onenormest()
returns a list with components,
est |
a number |
v |
0-1 integer vector length |
w |
numeric vector, the largest |
iter |
the number of iterations used. |
Author(s)
This is based on octave's condest()
and
onenormest()
implementations with original author
Jason Riedy, U Berkeley; translation to R and
adaption by Martin Maechler.
References
Nicholas J. Higham and Françoise Tisseur (2000). A Block Algorithm for Matrix 1-Norm Estimation, with an Application to 1-Norm Pseudospectra. SIAM J. Matrix Anal. Appl. 21, 4, 1185–1201.
William W. Hager (1984). Condition Estimates. SIAM J. Sci. Stat. Comput. 5, 311–316.
See Also
Examples
data(KNex, package = "Matrix")
mtm <- with(KNex, crossprod(mm))
system.time(ce <- condest(mtm))
sum(abs(ce$v)) ## || v ||_1 == 1
## Prove that || A v || = || A || / est (as ||v|| = 1):
stopifnot(all.equal(norm(mtm %*% ce$v),
norm(mtm) / ce$est))
## reciprocal
1 / ce$est
system.time(rc <- rcond(mtm)) # takes ca 3 x longer
rc
all.equal(rc, 1/ce$est) # TRUE -- the approximation was good
one <- onenormest(mtm)
str(one) ## est = 12.3
## the maximal column:
which(one$v == 1) # mostly 4, rarely 1, depending on random seed
Class "CsparseMatrix" of Sparse Matrices in Column-compressed Form
Description
The "CsparseMatrix"
class is the virtual class of
all sparse matrices coded in sorted compressed column-oriented form.
Since it is a virtual class, no objects may be created from it. See
showClass("CsparseMatrix")
for its subclasses.
Slots
i
:Object of class
"integer"
of length nnzero (number of non-zero elements). These are the 0-based row numbers for each non-zero element in the matrix, i.e.,i
must be in0:(nrow(.)-1)
.p
:integer
vector for providing pointers, one for each column, to the initial (zero-based) index of elements in the column..@p
is of lengthncol(.) + 1
, withp[1] == 0
andp[length(p)] == nnzero
, such that in fact,diff(.@p)
are the number of non-zero elements for each column.In other words,
m@p[1:ncol(m)]
contains the indices of those elements inm@x
that are the first elements in the respective column ofm
.Dim
,Dimnames
:inherited from the superclass, see the
sparseMatrix
class.
Extends
Class "sparseMatrix"
, directly.
Class "Matrix"
, by class "sparseMatrix"
.
Methods
matrix products %*%
,
crossprod()
and tcrossprod()
,
several solve
methods,
and other matrix methods available:
- Arith
signature(e1 = "CsparseMatrix", e2 = "numeric")
: ...- Arith
signature(e1 = "numeric", e2 = "CsparseMatrix")
: ...- Math
signature(x = "CsparseMatrix")
: ...- band
signature(x = "CsparseMatrix")
: ...- -
signature(e1 = "CsparseMatrix", e2 = "numeric")
: ...- -
signature(e1 = "numeric", e2 = "CsparseMatrix")
: ...- +
signature(e1 = "CsparseMatrix", e2 = "numeric")
: ...- +
signature(e1 = "numeric", e2 = "CsparseMatrix")
: ...- coerce
signature(from = "CsparseMatrix", to = "TsparseMatrix")
: ...- coerce
signature(from = "CsparseMatrix", to = "denseMatrix")
: ...- coerce
signature(from = "CsparseMatrix", to = "matrix")
: ...- coerce
signature(from = "TsparseMatrix", to = "CsparseMatrix")
: ...- coerce
signature(from = "denseMatrix", to = "CsparseMatrix")
: ...- diag
signature(x = "CsparseMatrix")
: ...- gamma
signature(x = "CsparseMatrix")
: ...- lgamma
signature(x = "CsparseMatrix")
: ...- log
signature(x = "CsparseMatrix")
: ...- t
signature(x = "CsparseMatrix")
: ...- tril
signature(x = "CsparseMatrix")
: ...- triu
signature(x = "CsparseMatrix")
: ...
Note
All classes extending CsparseMatrix
have a common validity
(see validObject
) check function. That function
additionally checks the i
slot for each column to contain
increasing row numbers.
In earlier versions of Matrix (<= 0.999375-16
),
validObject
automatically re-sorted the entries when
necessary, and hence new()
calls with somewhat permuted
i
and x
slots worked, as new(...)
(with slot arguments) automatically checks the validity.
Now, you have to use sparseMatrix
to achieve the same
functionality or know how to use .validateCsparse()
to do so.
See Also
colSums
, kronecker
, and other such methods
with own help pages.
Further, the super class of CsparseMatrix
,
sparseMatrix
, and, e.g.,
class dgCMatrix
for the links to other classes.
Examples
getClass("CsparseMatrix")
## The common validity check function (based on C code):
getValidity(getClass("CsparseMatrix"))
Virtual Class "ddenseMatrix" of Numeric Dense Matrices
Description
This is the virtual class of all dense numeric (i.e., double, hence “ddense”) S4 matrices.
Its most important subclass is the dgeMatrix
class.
Extends
Class "dMatrix"
directly;
class "Matrix"
, by the above.
Slots
the same slots at its subclass dgeMatrix
, see
there.
Methods
Most methods are implemented via as(*, "generalMatrix")
and are
mainly used as “fallbacks” when the subclass doesn't need its
own specialized method.
Use showMethods(class = "ddenseMatrix", where =
"package:Matrix")
for an overview.
See Also
The virtual classes Matrix
,
dMatrix
, and dsparseMatrix
.
Examples
showClass("ddenseMatrix")
showMethods(class = "ddenseMatrix", where = "package:Matrix")
Class "ddiMatrix" of Diagonal Numeric Matrices
Description
The class "ddiMatrix"
of numerical diagonal matrices.
Note that diagonal matrices now extend sparseMatrix
, whereas
they did extend dense matrices earlier.
Objects from the Class
Objects can be created by calls of the form new("ddiMatrix", ...)
but typically rather via Diagonal
.
Slots
x
:numeric vector. For an
n \times n
matrix, thex
slot is of lengthn
or0
, depending on thediag
slot:diag
:"character"
string, either"U"
or"N"
where"U"
denotes unit-diagonal, i.e., identity matrices.Dim
,Dimnames
:matrix dimension and
dimnames
, see theMatrix
class description.
Extends
Class "diagonalMatrix"
, directly.
Class "dMatrix"
, directly.
Class "sparseMatrix"
, indirectly, see
showClass("ddiMatrix")
.
Methods
- %*%
signature(x = "ddiMatrix", y = "ddiMatrix")
: ...
See Also
Class diagonalMatrix
and function Diagonal
.
Examples
(d2 <- Diagonal(x = c(10,1)))
str(d2)
## slightly larger in internal size:
str(as(d2, "sparseMatrix"))
M <- Matrix(cbind(1,2:4))
M %*% d2 #> `fast' multiplication
chol(d2) # trivial
stopifnot(is(cd2 <- chol(d2), "ddiMatrix"),
all.equal(cd2@x, c(sqrt(10),1)))
Dense LU Factorizations
Description
denseLU
is the class of dense, row-pivoted LU factorizations
of m \times n
real matrices A
,
having the general form
P_{1} A = L U
or (equivalently)
A = P_{1}' L U
where
P_{1}
is an m \times m
permutation matrix,
L
is an m \times \min(m,n)
unit lower trapezoidal matrix, and
U
is a \min(m,n) \times n
upper trapezoidal matrix. If m = n
, then the factors
L
and U
are triangular.
Slots
Dim
,Dimnames
inherited from virtual class
MatrixFactorization
.x
a numeric vector of length
prod(Dim)
storing the triangularL
andU
factors together in a packed format. The details of the representation are specified by the manual for LAPACK routinedgetrf
.perm
an integer vector of length
min(Dim)
specifying the permutationP_{1}
as a product of transpositions. The corresponding permutation vector can be obtained asasPerm(perm)
.
Extends
Class LU
, directly.
Class MatrixFactorization
, by class
LU
, distance 2.
Instantiation
Objects can be generated directly by calls of the form
new("denseLU", ...)
, but they are more typically obtained
as the value of lu(x)
for x
inheriting from
denseMatrix
(often dgeMatrix
).
Methods
coerce
signature(from = "denseLU", to = "dgeMatrix")
: returns adgeMatrix
with the dimensions of the factorized matrixA
, equal toL
below the diagonal and equal toU
on and above the diagonal.determinant
signature(from = "denseLU", logarithm = "logical")
: computes the determinant of the factorized matrixA
or its logarithm.expand
signature(x = "denseLU")
: seeexpand-methods
.expand1
signature(x = "denseLU")
: seeexpand1-methods
.expand2
signature(x = "denseLU")
: seeexpand2-methods
.solve
signature(a = "denseLU", b = "missing")
: seesolve-methods
.
References
The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dgetrf.f.
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
Class sparseLU
for sparse LU factorizations.
Class dgeMatrix
.
Generic functions lu
,
expand1
and expand2
.
Examples
showClass("denseLU")
set.seed(1)
n <- 3L
(A <- Matrix(round(rnorm(n * n), 2L), n, n))
## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- list(paste0("r", seq_len(n)),
paste0("c", seq_len(n)))
(lu.A <- lu(A))
str(e.lu.A <- expand2(lu.A), max.level = 2L)
## Underlying LAPACK representation
(m.lu.A <- as(lu.A, "dgeMatrix")) # which is L and U interlaced
stopifnot(identical(as(m.lu.A, "matrix"), `dim<-`(lu.A@x, lu.A@Dim)))
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)
## A ~ P1' L U in floating point
stopifnot(exprs = {
identical(names(e.lu.A), c("P1.", "L", "U"))
identical(e.lu.A[["P1."]],
new( "pMatrix", Dim = c(n, n), Dimnames = c(dn[1L], list(NULL)),
margin = 1L, perm = invertPerm(asPerm(lu.A@perm))))
identical(e.lu.A[["L"]],
new("dtrMatrix", Dim = c(n, n), Dimnames = list(NULL, NULL),
uplo = "L", diag = "U", x = lu.A@x))
identical(e.lu.A[["U"]],
new("dtrMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
uplo = "U", diag = "N", x = lu.A@x))
ae1(A, with(e.lu.A, P1. %*% L %*% U))
ae2(A[asPerm(lu.A@perm), ], with(e.lu.A, L %*% U))
})
## Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(lu.A)),
identical(solve(A, b), solve(lu.A, b)))
Virtual Class "denseMatrix" of All Dense Matrices
Description
This is the virtual class of all dense (S4) matrices.
It partitions into two subclasses
packedMatrix
and
unpackedMatrix
.
Alternatively into the (currently) three subclasses
ddenseMatrix
,
ldenseMatrix
, and
ndenseMatrix
.
denseMatrix
is (hence) the direct superclass of these (2+3 = 5
) classes.
Extends
class "Matrix"
directly.
Slots
exactly those of its superclass "Matrix"
, i.e.,
"Dim"
and "Dimnames"
.
Methods
Use showMethods(class = "denseMatrix", where =
"package:Matrix")
for an overview of methods.
Extraction ("["
) methods,
see [-methods
.
See Also
colSums
, kronecker
, and other such methods
with own help pages.
Its superclass Matrix
, and main subclasses,
ddenseMatrix
and sparseMatrix
.
Examples
showClass("denseMatrix")
Compressed, sparse, column-oriented numeric matrices
Description
The dgCMatrix
class is a class of sparse numeric
matrices in the compressed, sparse, column-oriented format. In this
implementation the non-zero elements in the columns are sorted into
increasing row order. dgCMatrix
is the
“standard” class for sparse numeric matrices in the
Matrix package.
Objects from the Class
Objects can be created by calls of the form new("dgCMatrix",
...)
, more typically via as(*, "CsparseMatrix")
or similar.
Often however, more easily via Matrix(*, sparse = TRUE)
,
or most efficiently via sparseMatrix()
.
Slots
x
:Object of class
"numeric"
- the non-zero elements of the matrix.- ...
all other slots are inherited from the superclass
"CsparseMatrix"
.
Methods
Matrix products (e.g., crossprod-methods), and (among other)
- coerce
signature(from = "matrix", to = "dgCMatrix")
- diag
signature(x = "dgCMatrix")
: returns the diagonal ofx
- dim
signature(x = "dgCMatrix")
: returns the dimensions ofx
- image
signature(x = "dgCMatrix")
: plots an image ofx
using thelevelplot
function- solve
signature(a = "dgCMatrix", b = "...")
: seesolve-methods
, notably the extra argumentsparse
.- lu
signature(x = "dgCMatrix")
: computes the LU decomposition of a squaredgCMatrix
object
See Also
Classes dsCMatrix
,
dtCMatrix
, lu
Examples
(m <- Matrix(c(0,0,2:0), 3,5))
str(m)
m[,1]
Class "dgeMatrix" of Dense Numeric (S4 Class) Matrices
Description
A general numeric dense matrix in the S4 Matrix
representation. dgeMatrix
is the “standard”
class for dense numeric matrices in the Matrix package.
Objects from the Class
Objects can be created by calls of the form new("dgeMatrix", ...)
or, more commonly, by coercion from the Matrix
class (see
Matrix) or by Matrix(..)
.
Slots
x
:Object of class
"numeric"
- the numeric values contained in the matrix, in column-major order.Dim
:Object of class
"integer"
- the dimensions of the matrix - must be an integer vector with exactly two non-negative values.Dimnames
:a list of length two - inherited from class
Matrix
.factors
:Object of class
"list"
- a list of factorizations of the matrix.
Methods
The are group methods (see, e.g., Arith
)
- Arith
signature(e1 = "dgeMatrix", e2 = "dgeMatrix")
: ...- Arith
signature(e1 = "dgeMatrix", e2 = "numeric")
: ...- Arith
signature(e1 = "numeric", e2 = "dgeMatrix")
: ...- Math
signature(x = "dgeMatrix")
: ...- Math2
signature(x = "dgeMatrix", digits = "numeric")
: ...
matrix products %*%
,
crossprod()
and tcrossprod()
,
several solve
methods,
and other matrix methods available:
- Schur
signature(x = "dgeMatrix", vectors = "logical")
: ...- Schur
signature(x = "dgeMatrix", vectors = "missing")
: ...- chol
signature(x = "dgeMatrix")
: seechol
.- colMeans
signature(x = "dgeMatrix")
: columnwise means (averages)- colSums
signature(x = "dgeMatrix")
: columnwise sums- diag
signature(x = "dgeMatrix")
: ...- dim
signature(x = "dgeMatrix")
: ...- dimnames
signature(x = "dgeMatrix")
: ...- eigen
signature(x = "dgeMatrix", only.values= "logical")
: ...- eigen
signature(x = "dgeMatrix", only.values= "missing")
: ...- norm
signature(x = "dgeMatrix", type = "character")
: ...- norm
signature(x = "dgeMatrix", type = "missing")
: ...- rcond
signature(x = "dgeMatrix", norm = "character")
ornorm = "missing"
: the reciprocal condition number,rcond()
.- rowMeans
signature(x = "dgeMatrix")
: rowwise means (averages)- rowSums
signature(x = "dgeMatrix")
: rowwise sums- t
signature(x = "dgeMatrix")
: matrix transpose
See Also
Classes Matrix
,
dtrMatrix
, and dsyMatrix
.
Sparse Compressed, Row-oriented Numeric Matrices
Description
The dgRMatrix
class is a class of sparse numeric
matrices in the compressed, sparse, row-oriented format. In this
implementation the non-zero elements in the rows are sorted into
increasing column order.
Note: The column-oriented sparse classes, e.g.,
dgCMatrix
, are preferred and better supported in
the Matrix package.
Objects from the Class
Objects can be created by calls of the form new("dgRMatrix", ...)
.
Slots
j
:Object of class
"integer"
of length nnzero (number of non-zero elements). These are the column numbers for each non-zero element in the matrix.p
:Object of class
"integer"
of pointers, one for each row, to the initial (zero-based) index of elements in the row.x
:Object of class
"numeric"
- the non-zero elements of the matrix.Dim
:Object of class
"integer"
- the dimensions of the matrix.
Methods
- diag
signature(x = "dgRMatrix")
: returns the diagonal ofx
- dim
signature(x = "dgRMatrix")
: returns the dimensions ofx
- image
signature(x = "dgRMatrix")
: plots an image ofx
using thelevelplot
function
See Also
the RsparseMatrix
class, the virtual class of all
sparse compressed row-oriented matrices, with its methods.
The dgCMatrix
class (column compressed
sparse) is really preferred.
Sparse matrices in triplet form
Description
The "dgTMatrix"
class is the class of sparse
matrices stored as (possibly redundant) triplets. The internal
representation is not at all unique, contrary to the one for class
dgCMatrix
.
Objects from the Class
Objects can be created by calls of the form
new("dgTMatrix", ...)
, but more typically via
spMatrix()
or sparseMatrix(*, repr = "T")
.
Slots
i
:integer
row indices of non-zero entries in 0-base, i.e., must be in0:(nrow(.)-1)
.j
:integer
column indices of non-zero entries. Must be the same length as sloti
and 0-based as well, i.e., in0:(ncol(.)-1)
.x
:numeric
vector - the (non-zero) entry at position(i,j)
. Must be the same length as sloti
. If an index pair occurs more than once, the corresponding values of slotx
are added to form the element of the matrix.Dim
:Object of class
"integer"
of length 2 - the dimensions of the matrix.
Methods
- +
signature(e1 = "dgTMatrix", e2 = "dgTMatrix")
- image
signature(x = "dgTMatrix")
: plots an image ofx
using thelevelplot
function- t
signature(x = "dgTMatrix")
: returns the transpose ofx
Note
Triplet matrices are a convenient form in which to construct sparse
matrices after which they can be coerced to
dgCMatrix
objects.
Note that both new(.)
and spMatrix
constructors
for "dgTMatrix"
(and other "TsparseMatrix"
classes) implicitly add x_k
's that belong to identical
(i_k, j_k)
pairs.
However this means that a matrix typically can be stored in more than
one possible "TsparseMatrix"
representations.
Use asUniqueT()
in order to ensure uniqueness of the
internal representation of such a matrix.
See Also
Class dgCMatrix
or the superclasses
dsparseMatrix
and
TsparseMatrix
; asUniqueT
.
Examples
m <- Matrix(0+1:28, nrow = 4)
m[-3,c(2,4:5,7)] <- m[ 3, 1:4] <- m[1:3, 6] <- 0
(mT <- as(m, "TsparseMatrix"))
str(mT)
mT[1,]
mT[4, drop = FALSE]
stopifnot(identical(mT[lower.tri(mT)],
m [lower.tri(m) ]))
mT[lower.tri(mT,diag=TRUE)] <- 0
mT
## Triplet representation with repeated (i,j) entries
## *adds* the corresponding x's:
T2 <- new("dgTMatrix",
i = as.integer(c(1,1,0,3,3)),
j = as.integer(c(2,2,4,0,0)), x=10*1:5, Dim=4:5)
str(T2) # contains (i,j,x) slots exactly as above, but
T2 ## has only three non-zero entries, as for repeated (i,j)'s,
## the corresponding x's are "implicitly" added
stopifnot(nnzero(T2) == 3)
Construct a Diagonal Matrix
Description
Construct a formally diagonal Matrix
,
i.e., an object inheriting from virtual class
diagonalMatrix
(or, if desired, a mathematically diagonal
CsparseMatrix
).
Usage
Diagonal(n, x = NULL, names = FALSE)
.sparseDiagonal(n, x = NULL, uplo = "U", shape = "t", unitri = TRUE, kind, cols)
.trDiagonal(n, x = NULL, uplo = "U", unitri = TRUE, kind)
.symDiagonal(n, x = NULL, uplo = "U", kind)
Arguments
n |
integer indicating the dimension of the (square) matrix.
If missing, then |
x |
numeric or logical vector listing values for the diagonal
entries, to be recycled as necessary. If |
names |
either |
uplo |
one of |
shape |
one of |
unitri |
logical indicating if a formally triangular result with
ones on the diagonal should be formally unit triangular, i.e.,
with |
kind |
one of |
cols |
optional integer vector with values in |
Value
Diagonal()
returns an object inheriting from virtual class
diagonalMatrix
.
.sparseDiagonal()
returns a CsparseMatrix
representation of Diagonal(n, x)
or, if cols
is given,
of Diagonal(n, x)[, cols+1]
. The precise class of the result
depends on shape
and kind
.
.trDiagonal()
and .symDiagonal()
are simple wrappers,
for .sparseDiagonal(shape = "t")
and
.sparseDiagonal(shape = "s")
, respectively.
.sparseDiagonal()
exists primarily to leverage efficient
C-level methods available for CsparseMatrix
.
Author(s)
Martin Maechler
See Also
the generic function diag
for extraction
of the diagonal from a matrix works for all “Matrices”.
bandSparse
constructs a banded sparse matrix from
its non-zero sub-/super - diagonals. band(A)
returns a
band matrix containing some sub-/super - diagonals of A
.
Matrix
for general matrix construction;
further, class diagonalMatrix
.
Examples
Diagonal(3)
Diagonal(x = 10^(3:1))
Diagonal(x = (1:4) >= 2)#-> "ldiMatrix"
## Use Diagonal() + kronecker() for "repeated-block" matrices:
M1 <- Matrix(0+0:5, 2,3)
(M <- kronecker(Diagonal(3), M1))
(S <- crossprod(Matrix(rbinom(60, size=1, prob=0.1), 10,6)))
(SI <- S + 10*.symDiagonal(6)) # sparse symmetric still
stopifnot(is(SI, "dsCMatrix"))
(I4 <- .sparseDiagonal(4, shape="t"))# now (2012-10) unitriangular
stopifnot(I4@diag == "U", all(I4 == diag(4)))
Class "diagonalMatrix" of Diagonal Matrices
Description
Class "diagonalMatrix" is the virtual class of all diagonal matrices.
Objects from the Class
A virtual Class: No objects may be created from it.
Slots
diag
:character
string, either"U"
or"N"
, where"U"
means ‘unit-diagonal’.Dim
:matrix dimension, and
Dimnames
:the
dimnames
, alist
, see theMatrix
class description. Typicallylist(NULL,NULL)
for diagonal matrices.
Extends
Class "sparseMatrix"
, directly.
Methods
These are just a subset of the signature for which defined methods. Currently, there are (too) many explicit methods defined in order to ensure efficient methods for diagonal matrices.
- coerce
signature(from = "matrix", to = "diagonalMatrix")
: ...- coerce
signature(from = "Matrix", to = "diagonalMatrix")
: ...- coerce
signature(from = "diagonalMatrix", to = "generalMatrix")
: ...- coerce
signature(from = "diagonalMatrix", to = "triangularMatrix")
: ...- coerce
signature(from = "diagonalMatrix", to = "nMatrix")
: ...- coerce
signature(from = "diagonalMatrix", to = "matrix")
: ...- coerce
signature(from = "diagonalMatrix", to = "sparseVector")
: ...- t
signature(x = "diagonalMatrix")
: ...
and many more methods
- solve
signature(a = "diagonalMatrix", b, ...)
: is trivially implemented, of course; see alsosolve-methods
.- which
signature(x = "nMatrix")
, semantically equivalent to base functionwhich(x, arr.ind)
.- "Math"
signature(x = "diagonalMatrix")
: all these group methods return a"diagonalMatrix"
, apart fromcumsum()
etc which return a vector also for basematrix
.- *
signature(e1 = "ddiMatrix", e2="denseMatrix")
: arithmetic and other operators from theOps
group have a few dozen explicit method definitions, in order to keep the results diagonal in many cases, including the following:- /
signature(e1 = "ddiMatrix", e2="denseMatrix")
: the result is from classddiMatrix
which is typically very desirable. Note that whene2
contains off-diagonal zeros orNA
s, we implicitly use0 / x = 0
, hence differing from traditional R arithmetic (where0 / 0 \mapsto \mbox{NaN}
), in order to preserve sparsity.- summary
(object = "diagonalMatrix")
: Returns an object of S3 class"diagSummary"
which is the summary of the vectorobject@x
plus a simple heading, and an appropriateprint
method.
See Also
Diagonal()
as constructor of these matrices, and
isDiagonal
.
ddiMatrix
and ldiMatrix
are
“actual” classes extending "diagonalMatrix"
.
Examples
I5 <- Diagonal(5)
D5 <- Diagonal(x = 10*(1:5))
## trivial (but explicitly defined) methods:
stopifnot(identical(crossprod(I5), I5),
identical(tcrossprod(I5), I5),
identical(crossprod(I5, D5), D5),
identical(tcrossprod(D5, I5), D5),
identical(solve(D5), solve(D5, I5)),
all.equal(D5, solve(solve(D5)), tolerance = 1e-12)
)
solve(D5)# efficient as is diagonal
# an unusual way to construct a band matrix:
rbind2(cbind2(I5, D5),
cbind2(D5, I5))
Transform Triangular Matrices from Unit Triangular to General Triangular and Back
Description
Transform a triangular matrix x
, i.e., of class
triangularMatrix
,
from (internally!) unit triangular (“unitriangular”) to
“general” triangular (diagU2N(x)
) or back (diagN2U(x)
).
Note that the latter, diagN2U(x)
, also sets the diagonal to one
in cases where diag(x)
was not all one.
.diagU2N(x)
and .diagN2U(x)
assume without
checking that x
is a triangularMatrix
with
suitable diag
slot ("U"
and "N"
, respectively),
hence they should be used with care.
Usage
diagU2N(x, cl = getClassDef(class(x)), checkDense = FALSE)
diagN2U(x, cl = getClassDef(class(x)), checkDense = FALSE)
.diagU2N(x, cl = getClassDef(class(x)), checkDense = FALSE)
.diagN2U(x, cl = getClassDef(class(x)), checkDense = FALSE)
Arguments
x |
a |
cl |
(optional, for speedup only:) class (definition) of |
checkDense |
logical indicating if dense (see
|
Details
The concept of unit triangular matrices with a diag
slot of
"U"
stems from LAPACK.
Value
a triangular matrix of the same class
but with a
different diag
slot. For diagU2N
(semantically) with
identical entries as x
, whereas in diagN2U(x)
, the
off-diagonal entries are unchanged and the diagonal is set to all
1
even if it was not previously.
Note
Such internal storage details should rarely be of relevance to the user. Hence, these functions really are rather internal utilities.
See Also
"triangularMatrix"
,
"dtCMatrix"
.
Examples
(T <- Diagonal(7) + triu(Matrix(rpois(49, 1/4), 7, 7), k = 1))
(uT <- diagN2U(T)) # "unitriangular"
(t.u <- diagN2U(10*T))# changes the diagonal!
stopifnot(all(T == uT), diag(t.u) == 1,
identical(T, diagU2N(uT)))
T[upper.tri(T)] <- 5 # still "dtC"
T <- diagN2U(as(T,"triangularMatrix"))
dT <- as(T, "denseMatrix") # (unitriangular)
dT.n <- diagU2N(dT, checkDense = TRUE)
sT.n <- diagU2N(dT)
stopifnot(is(dT.n, "denseMatrix"), is(sT.n, "sparseMatrix"),
dT@diag == "U", dT.n@diag == "N", sT.n@diag == "N",
all(dT == dT.n), all(dT == sT.n))
Scale the Rows and Columns of a Matrix
Description
dimScale
, rowScale
, and colScale
implement
D1 %*% x %*% D2
, D %*% x
, and x %*% D
for diagonal matrices D1
, D2
, and D
with
diagonal entries d1
, d2
, and d
, respectively.
Unlike the explicit products, these functions preserve dimnames(x)
and symmetry where appropriate.
Usage
dimScale(x, d1 = sqrt(1/diag(x, names = FALSE)), d2 = d1)
rowScale(x, d)
colScale(x, d)
Arguments
x |
a matrix, possibly inheriting from virtual class
|
d1 , d2 , d |
numeric vectors giving factors by which to scale
the rows or columns of |
Details
dimScale(x)
(with d1
and d2
unset) is only
roughly equivalent to cov2cor(x)
. cov2cor
sets the diagonal entries of the result to 1 (exactly);
dimScale
does not.
Value
The result of scaling x
, currently always inheriting from
virtual class dMatrix
.
It inherits from triangularMatrix
if and only
if x
does. In the special case of dimScale(x, d1, d2)
with identical d1
and d2
, it inherits from
symmetricMatrix
if and only if x
does.
Author(s)
Mikael Jagan
See Also
Examples
n <- 6L
(x <- forceSymmetric(matrix(1, n, n)))
dimnames(x) <- rep.int(list(letters[seq_len(n)]), 2L)
d <- seq_len(n)
(D <- Diagonal(x = d))
(scx <- dimScale(x, d)) # symmetry and 'dimnames' kept
(mmx <- D %*% x %*% D) # symmetry and 'dimnames' lost
stopifnot(identical(unname(as(scx, "generalMatrix")), mmx))
rowScale(x, d)
colScale(x, d)
(Virtual) Class "dMatrix" of "double" Matrices
Description
The dMatrix
class is a virtual class contained by all actual
classes of numeric matrices in the Matrix package. Similarly,
all the actual classes of logical matrices inherit from the
lMatrix
class.
Slots
Common to all matrix object in the package:
Dim
:Object of class
"integer"
- the dimensions of the matrix - must be an integer vector with exactly two non-negative values.Dimnames
:list of length two; each component containing NULL or a
character
vector length equal the correspondingDim
element.
Methods
There are (relatively simple) group methods (see, e.g., Arith
)
- Arith
signature(e1 = "dMatrix", e2 = "dMatrix")
: ...- Arith
signature(e1 = "dMatrix", e2 = "numeric")
: ...- Arith
signature(e1 = "numeric", e2 = "dMatrix")
: ...- Math
signature(x = "dMatrix")
: ...- Math2
signature(x = "dMatrix", digits = "numeric")
: this group containsround()
andsignif()
.- Compare
signature(e1 = "numeric", e2 = "dMatrix")
: ...- Compare
signature(e1 = "dMatrix", e2 = "numeric")
: ...- Compare
signature(e1 = "dMatrix", e2 = "dMatrix")
: ...- Summary
signature(x = "dMatrix")
: The"Summary"
group contains the seven functionsmax()
,min()
,range()
,prod()
,sum()
,any()
, andall()
.
The following methods are also defined for all double matrices:
- expm
signature(x = "dMatrix")
: computes the “Matrix Exponential”, seeexpm
.
The following methods are defined for all logical matrices:
- which
signature(x = "lsparseMatrix")
and many other subclasses of"lMatrix"
: as the base functionwhich(x, arr.ind)
returns the indices of theTRUE
entries inx
; ifarr.ind
is true, as a 2-column matrix of row and column indices. Since Matrix version 1.2-9, ifuseNames
is true, as by default, withdimnames
, the same asbase::which
.
See Also
The nonzero-pattern matrix class nMatrix
, which
can be used to store non-NA
logical
matrices even more compactly.
The numeric matrix classes dgeMatrix
,
dgCMatrix
, and Matrix
.
drop0(x, tol=1e-10)
is sometimes preferable to (and
more efficient than) zapsmall(x, digits=10)
.
Examples
showClass("dMatrix")
set.seed(101)
round(Matrix(rnorm(28), 4,7), 2)
M <- Matrix(rlnorm(56, sd=10), 4,14)
(M. <- zapsmall(M))
table(as.logical(M. == 0))
Dulmage-Mendelsohn Permutation / Decomposition
Description
For any n \times m
(typically) sparse matrix x
compute the Dulmage-Mendelsohn row and columns permutations which at
first splits the n
rows and m
columns into coarse partitions
each; and then a finer one, reordering rows and columns such that the
permutated matrix is “as upper triangular” as possible.
Usage
dmperm(x, nAns = 6L, seed = 0L)
Arguments
x |
a typically sparse matrix; internally coerced to either
|
nAns |
an integer specifying the |
seed |
an integer code in -1,0,1; determining the (initial)
permutation; by default, |
Details
See the book section by Tim Davis; page 122–127, in the References.
Value
a named list
with (by default) 6 components,
p |
integer vector with the permutation |
q |
integer vector with the permutation |
r |
integer vector of length |
s |
integer vector of length |
rr5 |
integer vector of length 5, defining the coarse row decomposition. |
cc5 |
integer vector of length 5, defining the coarse column decomposition. |
Author(s)
Martin Maechler, with a lot of “encouragement” by Mauricio Vargas.
References
Section 7.4 Dulmage-Mendelsohn decomposition, pp. 122 ff of
Timothy A. Davis (2006)
Direct Methods for Sparse Linear Systems, SIAM Series
“Fundamentals of Algorithms”.
See Also
Schur
, the class of permutation matrices; "pMatrix"
.
Examples
set.seed(17)
(S9 <- rsparsematrix(9, 9, nnz = 10, symmetric=TRUE)) # dsCMatrix
str( dm9 <- dmperm(S9) )
(S9p <- with(dm9, S9[p, q]))
## looks good, but *not* quite upper triangular; these, too:
str( dm9.0 <- dmperm(S9, seed=-1)) # non-random too.
str( dm9_1 <- dmperm(S9, seed= 1)) # a random one
## The last two permutations differ, but have the same effect!
(S9p0 <- with(dm9.0, S9[p, q])) # .. hmm ..
stopifnot(all.equal(S9p0, S9p))# same as as default, but different from the random one
set.seed(11)
(M <- triu(rsparsematrix(9,11, 1/4)))
dM <- dmperm(M); with(dM, M[p, q])
(Mp <- M[sample.int(nrow(M)), sample.int(ncol(M))])
dMp <- dmperm(Mp); with(dMp, Mp[p, q])
set.seed(7)
(n7 <- rsparsematrix(5, 12, nnz = 10, rand.x = NULL))
str( dm.7 <- dmperm(n7) )
stopifnot(exprs = {
lengths(dm.7[1:2]) == dim(n7)
identical(dm.7, dmperm(as(n7, "dMatrix")))
identical(dm.7[1:4], dmperm(n7, nAns=4))
identical(dm.7[1:2], dmperm(n7, nAns=2))
})
Positive Semi-definite Dense (Packed | Non-packed) Numeric Matrices
Description
The
"dpoMatrix"
class is the class of positive-semidefinite symmetric matrices in nonpacked storage.The
"dppMatrix"
class is the same except in packed storage. Only the upper triangle or the lower triangle is required to be available.The
"corMatrix"
and"copMatrix"
classes represent correlation matrices. They extend"dpoMatrix"
and"dppMatrix"
, respectively, with an additional slotsd
allowing restoration of the original covariance matrix.
Objects from the Class
Objects can be created by calls of the
form new("dpoMatrix", ...)
or from crossprod
applied to
an "dgeMatrix"
object.
Slots
uplo
:Object of class
"character"
. Must be either "U", for upper triangular, and "L", for lower triangular.x
:Object of class
"numeric"
. The numeric values that constitute the matrix, stored in column-major order.Dim
:Object of class
"integer"
. The dimensions of the matrix which must be a two-element vector of non-negative integers.Dimnames
:inherited from class
"Matrix"
factors
:Object of class
"list"
. A named list of factorizations that have been computed for the matrix.sd
:(for
"corMatrix"
and"copMatrix"
) anumeric
vector of lengthn
containing the (original)\sqrt{var(.)}
entries which allow reconstruction of a covariance matrix from the correlation matrix.
Extends
Class "dsyMatrix"
, directly.
Classes "dgeMatrix"
, "symmetricMatrix"
, and many more
by class "dsyMatrix"
.
Methods
- chol
signature(x = "dpoMatrix")
: Returns (and stores) the Cholesky decomposition ofx
, seechol
.- determinant
signature(x = "dpoMatrix")
: Returns thedeterminant
ofx
, viachol(x)
, see above.- rcond
signature(x = "dpoMatrix", norm = "character")
: Returns (and stores) the reciprocal of the condition number ofx
. Thenorm
can be"O"
for the one-norm (the default) or"I"
for the infinity-norm. For symmetric matrices the result does not depend on the norm.- solve
signature(a = "dpoMatrix", b = "....")
, and- solve
signature(a = "dppMatrix", b = "....")
work via the Cholesky composition, see also the Matrixsolve-methods
.- Arith
signature(e1 = "dpoMatrix", e2 = "numeric")
(and quite a few other signatures): The result of (“elementwise” defined) arithmetic operations is typically not positive-definite anymore. The only exceptions, currently, are multiplications, divisions or additions with positivelength(.) == 1
numbers (orlogical
s).
Note
Currently the validity methods for these classes such as
getValidity(getClass("dpoMatrix"))
for efficiency reasons
only check the diagonal entries of the matrix – they may not be negative.
This is only necessary but not sufficient for a symmetric matrix to be
positive semi-definite.
A more reliable (but often more expensive) check for positive
semi-definiteness would look at the signs of diag(BunchKaufman(.))
(with some tolerance for very small negative values), and for (strict)
positive definiteness at something like
!inherits(tryCatch(chol(.), error=identity), "error")
.
Indeed, when coercing to these classes, a version
of Cholesky()
or chol()
is
typically used, e.g., see selectMethod("coerce",
c(from="dsyMatrix", to="dpoMatrix"))
.
See Also
Classes dsyMatrix
and dgeMatrix
;
further, Matrix
, rcond
,
chol
, solve
, crossprod
.
Examples
h6 <- Hilbert(6)
rcond(h6)
str(h6)
h6 * 27720 # is ``integer''
solve(h6)
str(hp6 <- pack(h6))
### Note that as(*, "corMatrix") *scales* the matrix
(ch6 <- as(h6, "corMatrix"))
stopifnot(all.equal(as(h6 * 27720, "dsyMatrix"), round(27720 * h6),
tolerance = 1e-14),
all.equal(ch6@sd^(-2), 2*(1:6)-1,
tolerance = 1e-12))
chch <- Cholesky(ch6, perm = FALSE)
stopifnot(identical(chch, ch6@factors$Cholesky),
all(abs(crossprod(as(chch, "dtrMatrix")) - ch6) < 1e-10))
Drop Non-Structural Zeros from a Sparse Matrix
Description
Deletes “non-structural” zeros (i.e., zeros stored explicitly, in memory) from a sparse matrix and returns the result.
Usage
drop0(x, tol = 0, is.Csparse = NA, give.Csparse = TRUE)
Arguments
x |
a |
tol |
a non-negative number. If |
is.Csparse |
a logical used only if |
give.Csparse |
a logical indicating if the result must
inherit from virtual class |
Value
A sparseMatrix
, the result of deleting
non-structural zeros from x
, possibly after coercion.
Note
drop0
is sometimes called in conjunction with
zapsmall
, e.g., when dealing with sparse
matrix products; see the example.
See Also
Function sparseMatrix
, for constructing objects
inheriting from virtual class sparseMatrix
;
nnzero
.
Examples
(m <- sparseMatrix(i = 1:8, j = 2:9, x = c(0:2, 3:-1),
dims = c(10L, 20L)))
drop0(m)
## A larger example:
t5 <- new("dtCMatrix", Dim = c(5L, 5L), uplo = "L",
x = c(10, 1, 3, 10, 1, 10, 1, 10, 10),
i = c(0L,2L,4L, 1L, 3L,2L,4L, 3L, 4L),
p = c(0L, 3L, 5L, 7:9))
TT <- kronecker(t5, kronecker(kronecker(t5, t5), t5))
IT <- solve(TT)
I. <- TT %*% IT ; nnzero(I.) # 697 ( == 625 + 72 )
I.0 <- drop0(zapsmall(I.))
## which actually can be more efficiently achieved by
I.. <- drop0(I., tol = 1e-15)
stopifnot(all(I.0 == Diagonal(625)), nnzero(I..) == 625)
Numeric Symmetric Sparse (column compressed) Matrices
Description
The dsCMatrix
class is a class of symmetric, sparse
numeric matrices in the compressed, column-oriented format. In
this implementation the non-zero elements in the columns are sorted
into increasing row order.
The dsTMatrix
class is the class of symmetric, sparse numeric
matrices in triplet format.
Objects from the Class
Objects can be created by calls of the form new("dsCMatrix",
...)
or new("dsTMatrix", ...)
, or automatically via e.g.,
as(*, "symmetricMatrix")
, or (for dsCMatrix
) also
from Matrix(.)
.
Creation “from scratch” most efficiently happens via
sparseMatrix(*, symmetric=TRUE)
.
Slots
uplo
:A character object indicating if the upper triangle (
"U"
) or the lower triangle ("L"
) is stored.i
:Object of class
"integer"
of length nnZ (half number of non-zero elements). These are the row numbers for each non-zero element in the lower triangle of the matrix.p
:(only in class
"dsCMatrix"
:) aninteger
vector for providing pointers, one for each column, see the detailed description inCsparseMatrix
.j
:(only in class
"dsTMatrix"
:) Object of class"integer"
of length nnZ (asi
). These are the column numbers for each non-zero element in the lower triangle of the matrix.x
:Object of class
"numeric"
of length nnZ – the non-zero elements of the matrix (to be duplicated for full matrix).factors
:Object of class
"list"
- a list of factorizations of the matrix.Dim
:Object of class
"integer"
- the dimensions of the matrix - must be an integer vector with exactly two non-negative values.
Extends
Both classes extend classes and symmetricMatrix
dsparseMatrix
directly;
dsCMatrix
further directly extends
CsparseMatrix
, where
dsTMatrix
does TsparseMatrix
.
Methods
- solve
signature(a = "dsCMatrix", b = "....")
:x <- solve(a,b)
solvesA x = b
forx
; seesolve-methods
.- chol
signature(x = "dsCMatrix", pivot = "logical")
: Returns (and stores) the Cholesky decomposition ofx
, seechol
.- Cholesky
signature(A = "dsCMatrix",...)
: Computes more flexibly Cholesky decompositions, seeCholesky
.- determinant
signature(x = "dsCMatrix", logarithm = "missing")
: Evaluate the determinant ofx
on the logarithm scale. This creates and stores the Cholesky factorization.- determinant
signature(x = "dsCMatrix", logarithm = "logical")
: Evaluate the determinant ofx
on the logarithm scale or not, according to thelogarithm
argument. This creates and stores the Cholesky factorization.- t
signature(x = "dsCMatrix")
: Transpose. As for all symmetric matrices, a matrix for which the upper triangle is stored produces a matrix for which the lower triangle is stored and vice versa, i.e., theuplo
slot is swapped, and the row and column indices are interchanged.- t
signature(x = "dsTMatrix")
: Transpose. Theuplo
slot is swapped from"U"
to"L"
or vice versa, as for a"dsCMatrix"
, see above.
See Also
Classes dgCMatrix
, dgTMatrix
,
dgeMatrix
and those mentioned above.
Examples
mm <- Matrix(toeplitz(c(10, 0, 1, 0, 3)), sparse = TRUE)
mm # automatically dsCMatrix
str(mm)
mT <- as(as(mm, "generalMatrix"), "TsparseMatrix")
## Either
(symM <- as(mT, "symmetricMatrix")) # dsT
(symC <- as(symM, "CsparseMatrix")) # dsC
## or
sT <- Matrix(mT, sparse=TRUE, forceCheck=TRUE) # dsT
sym2 <- as(symC, "TsparseMatrix")
## --> the same as 'symM', a "dsTMatrix"
Virtual Class "dsparseMatrix" of Numeric Sparse Matrices
Description
The Class "dsparseMatrix"
is the virtual (super) class of
all numeric sparse matrices.
Slots
Dim
:the matrix dimension, see class
"Matrix"
.Dimnames
:see the
"Matrix"
class.x
:a
numeric
vector containing the (non-zero) matrix entries.
Extends
Class "dMatrix"
and "sparseMatrix"
, directly.
Class "Matrix"
, by the above classes.
See Also
the documentation of the (non virtual) sub classes, see
showClass("dsparseMatrix")
; in particular,
dgTMatrix, dgCMatrix, and
dgRMatrix.
Examples
showClass("dsparseMatrix")
Symmetric Sparse Compressed Row Matrices
Description
The dsRMatrix
class is a class of symmetric, sparse
matrices in the compressed, row-oriented format. In this
implementation the non-zero elements in the rows are sorted into
increasing column order.
Objects from the Class
These "..RMatrix"
classes are currently still mostly unimplemented!
Objects can be created by calls of the form new("dsRMatrix", ...)
.
Slots
uplo
:A character object indicating if the upper triangle (
"U"
) or the lower triangle ("L"
) is stored. At present only the lower triangle form is allowed.j
:Object of class
"integer"
of lengthnnzero
(number of non-zero elements). These are the row numbers for each non-zero element in the matrix.p
:Object of class
"integer"
of pointers, one for each row, to the initial (zero-based) index of elements in the row.factors
:Object of class
"list"
- a list of factorizations of the matrix.x
:Object of class
"numeric"
- the non-zero elements of the matrix.Dim
:Object of class
"integer"
- the dimensions of the matrix - must be an integer vector with exactly two non-negative values.Dimnames
:List of length two, see
Matrix
.
Extends
Classes dsparseMatrix
,
symmetricMatrix
, and
RsparseMatrix
, directly.
Class "dMatrix"
, by class "dsparseMatrix"
;
class "sparseMatrix"
, by classes "dsparseMatrix"
and
"RsparseMatrix"
.
Methods
- forceSymmetric
signature(x = "dsRMatrix", uplo = "missing")
: a trivial method just returningx
- forceSymmetric
signature(x = "dsRMatrix", uplo = "character")
: ifuplo == x@uplo
, this trivially returnsx
; otherwiset(x)
.
See Also
the classes dgCMatrix
,
dgTMatrix
, and dgeMatrix
.
Examples
(m0 <- new("dsRMatrix"))
m2 <- new("dsRMatrix", Dim = c(2L,2L),
x = c(3,1), j = c(1L,1L), p = 0:2)
m2
stopifnot(colSums(as(m2, "TsparseMatrix")) == 3:4)
str(m2)
(ds2 <- forceSymmetric(diag(2))) # dsy*
dR <- as(ds2, "RsparseMatrix")
dR # dsRMatrix
Symmetric Dense (Packed or Unpacked) Numeric Matrices
Description
The
"dsyMatrix"
class is the class of symmetric, dense matrices in non-packed storage and-
"dspMatrix"
is the class of symmetric dense matrices in packed storage, seepack()
. Only the upper triangle or the lower triangle is stored.
Objects from the Class
Objects can be created by calls of the form new("dsyMatrix",
...)
or new("dspMatrix", ...)
, respectively.
Slots
uplo
:Object of class
"character"
. Must be either "U", for upper triangular, and "L", for lower triangular.x
:Object of class
"numeric"
. The numeric values that constitute the matrix, stored in column-major order.Dim
,Dimnames
:The dimension (a length-2
"integer"
) and corresponding names (orNULL
), see theMatrix
.factors
:Object of class
"list"
. A named list of factorizations that have been computed for the matrix.
Extends
"dsyMatrix"
extends class "dgeMatrix"
, directly, whereas
"dspMatrix"
extends class "ddenseMatrix"
, directly.
Both extend class "symmetricMatrix"
, directly,
and class "Matrix"
and others, indirectly, use
showClass("dsyMatrix")
, e.g., for details.
Methods
- norm
signature(x = "dspMatrix", type = "character")
, orx = "dsyMatrix"
ortype = "missing"
: Computes the matrix norm of the desired type, see,norm
.- rcond
signature(x = "dspMatrix", type = "character")
, orx = "dsyMatrix"
ortype = "missing"
: Computes the reciprocal condition number,rcond()
.- solve
signature(a = "dspMatrix", b = "....")
, and- solve
signature(a = "dsyMatrix", b = "....")
:x <- solve(a,b)
solvesA x = b
forx
; seesolve-methods
.- t
signature(x = "dsyMatrix")
: Transpose; swaps from upper triangular to lower triangular storage, i.e., the uplo slot from"U"
to"L"
or vice versa, the same as for all symmetric matrices.
See Also
The positive (Semi-)definite dense (packed or non-packed
numeric matrix classes dpoMatrix
,
dppMatrix
and corMatrix
,
Classes dgeMatrix
and Matrix
;
solve
, norm
, rcond
,
t
Examples
## Only upper triangular part matters (when uplo == "U" as per default)
(sy2 <- new("dsyMatrix", Dim = as.integer(c(2,2)), x = c(14, NA,32,77)))
str(t(sy2)) # uplo = "L", and the lower tri. (i.e. NA is replaced).
chol(sy2) #-> "Cholesky" matrix
(sp2 <- pack(sy2)) # a "dspMatrix"
## Coercing to dpoMatrix gives invalid object:
sy3 <- new("dsyMatrix", Dim = as.integer(c(2,2)), x = c(14, -1, 2, -7))
try(as(sy3, "dpoMatrix")) # -> error: not positive definite
## 4x4 example
m <- matrix(0,4,4); m[upper.tri(m)] <- 1:6
(sym <- m+t(m)+diag(11:14, 4))
(S1 <- pack(sym))
(S2 <- t(S1))
stopifnot(all(S1 == S2)) # equal "seen as matrix", but differ internally :
str(S1)
S2@x
Triangular, (compressed) sparse column matrices
Description
The "dtCMatrix"
class is a class of triangular, sparse
matrices in the compressed, column-oriented format. In this
implementation the non-zero elements in the columns are sorted into
increasing row order.
The "dtTMatrix"
class is a class of triangular, sparse matrices
in triplet format.
Objects from the Class
Objects can be created by calls of the form new("dtCMatrix",
...)
or calls of the form new("dtTMatrix", ...)
,
but more typically automatically via Matrix()
or coercions such as as(x, "triangularMatrix")
.
Slots
uplo
:Object of class
"character"
. Must be either "U", for upper triangular, and "L", for lower triangular.diag
:Object of class
"character"
. Must be either"U"
, for unit triangular (diagonal is all ones), or"N"
; seetriangularMatrix
.p
:(only present in
"dtCMatrix"
:) aninteger
vector for providing pointers, one for each column, see the detailed description inCsparseMatrix
.i
:Object of class
"integer"
of length nnzero (number of non-zero elements). These are the row numbers for each non-zero element in the matrix.j
:Object of class
"integer"
of length nnzero (number of non-zero elements). These are the column numbers for each non-zero element in the matrix. (Only present in thedtTMatrix
class.)x
:Object of class
"numeric"
- the non-zero elements of the matrix.Dim
,Dimnames
:The dimension (a length-2
"integer"
) and corresponding names (orNULL
), inherited from theMatrix
, see there.
Extends
Class "dgCMatrix"
, directly.
Class "triangularMatrix"
, directly.
Class "dMatrix"
, "sparseMatrix"
, and more by class
"dgCMatrix"
etc, see the examples.
Methods
- solve
signature(a = "dtCMatrix", b = "....")
: sparse triangular solve (aka “backsolve” or “forwardsolve”), seesolve-methods
.- t
signature(x = "dtCMatrix")
: returns the transpose ofx
- t
signature(x = "dtTMatrix")
: returns the transpose ofx
See Also
Classes dgCMatrix
, dgTMatrix
,
dgeMatrix
, and dtrMatrix
.
Examples
showClass("dtCMatrix")
showClass("dtTMatrix")
t1 <- new("dtTMatrix", x= c(3,7), i= 0:1, j=3:2, Dim= as.integer(c(4,4)))
t1
## from 0-diagonal to unit-diagonal {low-level step}:
tu <- t1 ; tu@diag <- "U"
tu
(cu <- as(tu, "CsparseMatrix"))
str(cu)# only two entries in @i and @x
stopifnot(cu@i == 1:0,
all(2 * symmpart(cu) == Diagonal(4) + forceSymmetric(cu)))
t1[1,2:3] <- -1:-2
diag(t1) <- 10*c(1:2,3:2)
t1 # still triangular
(it1 <- solve(t1))
t1. <- solve(it1)
all(abs(t1 - t1.) < 10 * .Machine$double.eps)
## 2nd example
U5 <- new("dtCMatrix", i= c(1L, 0:3), p=c(0L,0L,0:2, 5L), Dim = c(5L, 5L),
x = rep(1, 5), diag = "U")
U5
(iu <- solve(U5)) # contains one '0'
validObject(iu2 <- solve(U5, Diagonal(5)))# failed in earlier versions
I5 <- iu %*% U5 # should equal the identity matrix
i5 <- iu2 %*% U5
m53 <- matrix(1:15, 5,3, dimnames=list(NULL,letters[1:3]))
asDiag <- function(M) as(drop0(M), "diagonalMatrix")
stopifnot(
all.equal(Diagonal(5), asDiag(I5), tolerance=1e-14) ,
all.equal(Diagonal(5), asDiag(i5), tolerance=1e-14) ,
identical(list(NULL, dimnames(m53)[[2]]), dimnames(solve(U5, m53)))
)
Packed Triangular Dense Matrices - "dtpMatrix"
Description
The "dtpMatrix"
class is the class of triangular,
dense, numeric matrices in packed storage. The "dtrMatrix"
class is the same except in nonpacked storage.
Objects from the Class
Objects can be created by calls of the form new("dtpMatrix",
...)
or by coercion from other classes of matrices.
Slots
uplo
:Object of class
"character"
. Must be either "U", for upper triangular, and "L", for lower triangular.diag
:Object of class
"character"
. Must be either"U"
, for unit triangular (diagonal is all ones), or"N"
; seetriangularMatrix
.x
:Object of class
"numeric"
. The numeric values that constitute the matrix, stored in column-major order. For a packed square matrix of dimensiond \times d
,length(x)
is of lengthd(d+1)/2
(also whendiag == "U"
!).Dim
,Dimnames
:The dimension (a length-2
"integer"
) and corresponding names (orNULL
), inherited from theMatrix
, see there.
Extends
Class "ddenseMatrix"
, directly.
Class "triangularMatrix"
, directly.
Class "dMatrix"
and more by class "ddenseMatrix"
etc, see
the examples.
Methods
- %*%
signature(x = "dtpMatrix", y = "dgeMatrix")
: Matrix multiplication; ditto for several other signature combinations, seeshowMethods("%*%", class = "dtpMatrix")
.- determinant
signature(x = "dtpMatrix", logarithm = "logical")
: thedeterminant(x)
trivially isprod(diag(x))
, but computed on log scale to prevent over- and underflow.- diag
signature(x = "dtpMatrix")
: ...- norm
signature(x = "dtpMatrix", type = "character")
: ...- rcond
signature(x = "dtpMatrix", norm = "character")
: ...- solve
signature(a = "dtpMatrix", b = "...")
: efficiently using internal backsolve or forwardsolve, seesolve-methods
.- t
signature(x = "dtpMatrix")
:t(x)
remains a"dtpMatrix"
, lower triangular ifx
is upper triangular, and vice versa.
See Also
Class dtrMatrix
Examples
showClass("dtrMatrix")
example("dtrMatrix-class", echo=FALSE)
(p1 <- pack(T2))
str(p1)
(pp <- pack(T))
ip1 <- solve(p1)
stopifnot(length(p1@x) == 3, length(pp@x) == 3,
p1 @ uplo == T2 @ uplo, pp @ uplo == T @ uplo,
identical(t(pp), p1), identical(t(p1), pp),
all((l.d <- p1 - T2) == 0), is(l.d, "dtpMatrix"),
all((u.d <- pp - T ) == 0), is(u.d, "dtpMatrix"),
l.d@uplo == T2@uplo, u.d@uplo == T@uplo,
identical(t(ip1), solve(pp)), is(ip1, "dtpMatrix"),
all.equal(as(solve(p1,p1), "diagonalMatrix"), Diagonal(2)))
Triangular, dense, numeric matrices
Description
The "dtrMatrix"
class is the class of triangular, dense,
numeric matrices in nonpacked storage. The "dtpMatrix"
class
is the same except in packed storage, see pack()
.
Objects from the Class
Objects can be created by calls of the form new("dtrMatrix", ...)
.
Slots
uplo
:Object of class
"character"
. Must be either "U", for upper triangular, and "L", for lower triangular.diag
:Object of class
"character"
. Must be either"U"
, for unit triangular (diagonal is all ones), or"N"
; seetriangularMatrix
.x
:Object of class
"numeric"
. The numeric values that constitute the matrix, stored in column-major order.Dim
:Object of class
"integer"
. The dimensions of the matrix which must be a two-element vector of non-negative integers.
Extends
Class "ddenseMatrix"
, directly.
Class "triangularMatrix"
, directly.
Class "Matrix"
and others, by class "ddenseMatrix"
.
Methods
Among others (such as matrix products, e.g. ?crossprod-methods
),
- norm
signature(x = "dtrMatrix", type = "character")
: ..- rcond
signature(x = "dtrMatrix", norm = "character")
: ..- solve
signature(a = "dtrMatrix", b = "....")
: efficiently use a “forwardsolve” orbacksolve
for a lower or upper triangular matrix, respectively, see alsosolve-methods
.- +, -, *, ..., ==, >=, ...
all the
Ops
group methods are available. When applied to two triangular matrices, these return a triangular matrix when easily possible.
See Also
Classes ddenseMatrix
, dtpMatrix
,
triangularMatrix
Examples
(m <- rbind(2:3, 0:-1))
(M <- as(m, "generalMatrix"))
(T <- as(M, "triangularMatrix")) # formally upper triangular
(T2 <- as(t(M), "triangularMatrix"))
stopifnot(T@uplo == "U", T2@uplo == "L", identical(T2, t(T)))
m <- matrix(0,4,4); m[upper.tri(m)] <- 1:6
(t1 <- Matrix(m+diag(,4)))
str(t1p <- pack(t1))
(t1pu <- diagN2U(t1p))
stopifnot(exprs = {
inherits(t1 , "dtrMatrix"); validObject(t1)
inherits(t1p, "dtpMatrix"); validObject(t1p)
inherits(t1pu,"dtCMatrix"); validObject(t1pu)
t1pu@x == 1:6
all(t1pu == t1p)
identical((t1pu - t1)@x, numeric())# sparse all-0
})
Triangular Sparse Compressed Row Matrices
Description
The dtRMatrix
class is a class of triangular, sparse
matrices in the compressed, row-oriented format. In this
implementation the non-zero elements in the rows are sorted into
increasing columnd order.
Objects from the Class
This class is currently still mostly unimplemented!
Objects can be created by calls of the form new("dtRMatrix", ...)
.
Slots
uplo
:Object of class
"character"
. Must be either "U", for upper triangular, and "L", for lower triangular. At present only the lower triangle form is allowed.diag
:Object of class
"character"
. Must be either"U"
, for unit triangular (diagonal is all ones), or"N"
; seetriangularMatrix
.j
:Object of class
"integer"
of lengthnnzero(.)
(number of non-zero elements). These are the row numbers for each non-zero element in the matrix.p
:Object of class
"integer"
of pointers, one for each row, to the initial (zero-based) index of elements in the row. (Only present in thedsRMatrix
class.)x
:Object of class
"numeric"
- the non-zero elements of the matrix.Dim
:The dimension (a length-2
"integer"
)Dimnames
:corresponding names (or
NULL
), inherited from theMatrix
, see there.
Extends
Class "dgRMatrix"
, directly.
Class "dsparseMatrix"
, by class "dgRMatrix"
.
Class "dMatrix"
, by class "dgRMatrix"
.
Class "sparseMatrix"
, by class "dgRMatrix"
.
Class "Matrix"
, by class "dgRMatrix"
.
Methods
No methods currently with class "dsRMatrix" in the signature.
See Also
Classes dgCMatrix
, dgTMatrix
,
dgeMatrix
Examples
(m0 <- new("dtRMatrix"))
(m2 <- new("dtRMatrix", Dim = c(2L,2L),
x = c(5, 1:2), p = c(0L,2:3), j= c(0:1,1L)))
str(m2)
(m3 <- as(Diagonal(2), "RsparseMatrix"))# --> dtRMatrix
Expand Matrix Factorizations
Description
expand1
and expand2
construct matrix factors from
objects specifying matrix factorizations. Such objects typically
do not store the factors explicitly, employing instead a compact
representation to save memory.
Usage
expand1(x, which, ...)
expand2(x, ...)
expand (x, ...)
Arguments
x |
a matrix factorization, typically inheriting from
virtual class |
which |
a character string indicating a matrix factor. |
... |
further arguments passed to or from methods. |
Details
Methods for expand
are retained only for backwards
compatibility with Matrix < 1.6-0
. New code
should use expand1
and expand2
, whose methods
provide more control and behave more consistently. Notably,
expand2
obeys the rule that the product of the matrix
factors in the returned list should reproduce
(within some tolerance) the factorized matrix,
including its dimnames
.
Hence if x
is a matrix and y
is its factorization,
then
all.equal(as(x, "matrix"), as(Reduce(`%*%`, expand2(y)), "matrix"))
should in most cases return TRUE
.
Value
expand1
returns an object inheriting from virtual class
Matrix
, representing the factor indicated
by which
, always without row and column names.
expand2
returns a list of factors, typically with names
using conventional notation, as in list(L=, U=)
.
The first and last factors get the row and column names of the
factorized matrix, which are preserved in the Dimnames
slot of x
.
Methods
The following table lists methods for expand1
together with
allowed values of argument which
.
class(x) | which |
Schur | c("Q", "T", "Q.") |
denseLU | c("P1", "P1.", "L", "U") |
sparseLU | c("P1", "P1.", "P2", "P2.", "L", "U") |
sparseQR | c("P1", "P1.", "P2", "P2.", "Q", "Q1", "R", "R1") |
BunchKaufman , pBunchKaufman | c("U", "DU", "U.", "L", "DL", "L.") |
Cholesky , pCholesky | c("P1", "P1.", "L1", "D", "L1.", "L", "L.") |
CHMsimpl , CHMsimpl | c("P1", "P1.", "L1", "D", "L1.", "L", "L.")
|
Methods for expand2
and expand
are described
below. Factor names and classes apply also to expand1
.
expand2
signature(x = "CHMsimpl")
: expands the factorizationA = P_{1}' L_{1} D L_{1}' P_{1} = P_{1}' L L' P_{1}
aslist(P1., L1, D, L1., P1)
(the default) or aslist(P1., L, L., P1)
, depending on optional logical argumentLDL
.P1
andP1.
arepMatrix
,L1
,L1.
,L
, andL.
aredtCMatrix
, andD
is addiMatrix
.expand2
signature(x = "CHMsuper")
: asCHMsimpl
, but the triangular factors are stored asdgCMatrix
.expand2
signature(x = "p?Cholesky")
: expands the factorizationA = L_{1} D L_{1}' = L L'
aslist(L1, D, L1.)
(the default) or aslist(L, L.)
, depending on optional logical argumentLDL
.L1
,L1.
,L
, andL.
aredtrMatrix
ordtpMatrix
, andD
is addiMatrix
.expand2
signature(x = "p?BunchKaufman")
: expands the factorizationA = U D_{U} U' = L D_{L} L'
whereU = \prod_{k = 1}^{b_{U}} P_{k} U_{k}
andL = \prod_{k = 1}^{b_{L}} P_{k} L_{k}
aslist(U, DU, U.)
orlist(L, DL, L.)
, depending onx@uplo
. If optional argumentcomplete
isTRUE
, then an unnamed list giving the full expansion with2 b_{U} + 1
or2 b_{L} + 1
matrix factors is returned instead.P_{k}
are represented aspMatrix
,U_{k}
andL_{k}
are represented asdtCMatrix
, andD_{U}
andD_{L}
are represented asdsCMatrix
.expand2
signature(x = "Schur")
: expands the factorizationA = Q T Q'
aslist(Q, T, Q.)
.Q
andQ.
arex@Q
andt(x@Q)
moduloDimnames
, andT
isx@T
.expand2
signature(x = "sparseLU")
: expands the factorizationA = P_{1}' L U P_{2}'
aslist(P1., L, U, P2.)
.P1.
andP2.
arepMatrix
, andL
andU
aredtCMatrix
.expand2
signature(x = "denseLU")
: expands the factorizationA = P_{1}' L U
aslist(P1., L, U)
.P1.
is apMatrix
, andL
andU
aredtrMatrix
if square anddgeMatrix
otherwise.expand2
signature(x = "sparseQR")
: expands the factorizationA = P_{1}' Q R P_{2}' = P_{1}' Q_{1} R_{1} P_{2}'
aslist(P1., Q, R, P2.)
orlist(P1., Q1, R1, P2.)
, depending on optional logical argumentcomplete
.P1.
andP2.
arepMatrix
,Q
andQ1
aredgeMatrix
,R
is adgCMatrix
, andR1
is adtCMatrix
.expand
signature(x = "CHMfactor")
: asexpand2
, but returninglist(P, L)
.expand(x)[["P"]]
andexpand2(x)[["P1"]]
represent the same permutation matrixP_{1}
but have oppositemargin
slots and invertedperm
slots. The components ofexpand(x)
do not preservex@Dimnames
.expand
signature(x = "sparseLU")
: asexpand2
, but returninglist(P, L, U, Q)
.expand(x)[["Q"]]
andexpand2(x)[["P2."]]
represent the same permutation matrixP_{2}'
but have oppositemargin
slots and invertedperm
slots.expand(x)[["P"]]
represents the permutation matrixP_{1}
rather than its transposeP_{1}'
; it isexpand2(x)[["P1."]]
with an invertedperm
slot.expand(x)[["L"]]
andexpand2(x)[["L"]]
represent the same unit lower triangular matrixL
, but withdiag
slot equal to"N"
and"U"
, respectively.expand(x)[["L"]]
andexpand(x)[["U"]]
store the permuted first and second components ofx@Dimnames
in theirDimnames
slots.expand
signature(x = "denseLU")
: asexpand2
, but returninglist(L, U, P)
.expand(x)[["P"]]
andexpand2(x)[["P1."]]
are identical moduloDimnames
. The components ofexpand(x)
do not preservex@Dimnames
.
See Also
The virtual class MatrixFactorization
of matrix factorizations.
Generic functions Cholesky
, BunchKaufman
,
Schur
, lu
, and qr
for
computing factorizations.
Examples
showMethods("expand1", inherited = FALSE)
showMethods("expand2", inherited = FALSE)
set.seed(0)
(A <- Matrix(rnorm(9L, 0, 10), 3L, 3L))
(lu.A <- lu(A))
(e.lu.A <- expand2(lu.A))
stopifnot(exprs = {
is.list(e.lu.A)
identical(names(e.lu.A), c("P1.", "L", "U"))
all(sapply(e.lu.A, is, "Matrix"))
all.equal(as(A, "matrix"), as(Reduce(`%*%`, e.lu.A), "matrix"))
})
## 'expand1' and 'expand2' give equivalent results modulo
## dimnames and representation of permutation matrices;
## see also function 'alt' in example("Cholesky-methods")
(a1 <- sapply(names(e.lu.A), expand1, x = lu.A, simplify = FALSE))
all.equal(a1, e.lu.A)
## see help("denseLU-class") and others for more examples
Matrix Exponential
Description
Compute the exponential of a matrix.
Usage
expm(x)
Arguments
x |
a matrix, typically inheriting from the
|
Details
The exponential of a matrix is defined as the infinite Taylor
series expm(A) = I + A + A^2/2! + A^3/3! + ...
(although this is
definitely not the way to compute it). The method for the
dgeMatrix
class uses Ward's diagonal Pade' approximation with
three step preconditioning, a recommendation from
Moler & Van Loan (1978) “Nineteen dubious ways...”.
Value
The matrix exponential of x
.
Author(s)
This is a translation of the implementation of the corresponding Octave function contributed to the Octave project by A. Scottedward Hodel A.S.Hodel@Eng.Auburn.EDU. A bug in there has been fixed by Martin Maechler.
References
https://en.wikipedia.org/wiki/Matrix_exponential
Cleve Moler and Charles Van Loan (2003) Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review 45, 1, 3–49. doi:10.1137/S00361445024180
for historical reference mostly:
Moler, C. and Van Loan, C. (1978)
Nineteen dubious ways to compute the exponential of a matrix.
SIAM Review 20, 4, 801–836.
doi:10.1137/1020098
Eric W. Weisstein et al. (1999) Matrix Exponential. From MathWorld, https://mathworld.wolfram.com/MatrixExponential.html
See Also
Package expm, which provides newer (in some cases
faster, more accurate) algorithms for computing the matrix
exponential via its own (non-generic) function expm()
.
expm also implements logm()
, sqrtm()
, etc.
Generic function Schur
.
Examples
(m1 <- Matrix(c(1,0,1,1), ncol = 2))
(e1 <- expm(m1)) ; e <- exp(1)
stopifnot(all.equal(e1@x, c(e,0,e,e), tolerance = 1e-15))
(m2 <- Matrix(c(-49, -64, 24, 31), ncol = 2))
(e2 <- expm(m2))
(m3 <- Matrix(cbind(0,rbind(6*diag(3),0))))# sparse!
(e3 <- expm(m3)) # upper triangular
Read and write external matrix formats
Description
Read matrices stored in the Harwell-Boeing or MatrixMarket formats
or write sparseMatrix
objects to one of these
formats.
Usage
readHB(file)
readMM(file)
writeMM(obj, file, ...)
Arguments
obj |
a real sparse matrix |
file |
for Alternatively, |
... |
optional additional arguments. Currently none are used in any methods. |
Value
The readHB
and readMM
functions return an object that
inherits from the "Matrix"
class. Methods for the
writeMM
generic functions usually return
NULL
and, as a side effect, the matrix obj
is
written to file
in the MatrixMarket format (writeMM).
Note
The Harwell-Boeing format is older and less flexible than the
MatrixMarket format. The function writeHB
was deprecated and
has now been removed. Please use writeMM
instead.
Note that these formats do not know anything about
dimnames
, hence these are dropped by writeMM()
.
A very simple way to export small sparse matrices S
, is to use
summary(S)
which returns a data.frame
with
columns i
, j
, and possibly x
, see summary
in
sparseMatrix-class
, and an example below.
References
https://math.nist.gov/MatrixMarket/
Examples
str(pores <- readMM(system.file("external/pores_1.mtx", package = "Matrix")))
str(utm <- readHB(system.file("external/utm300.rua" , package = "Matrix")))
str(lundA <- readMM(system.file("external/lund_a.mtx" , package = "Matrix")))
str(lundA <- readHB(system.file("external/lund_a.rsa" , package = "Matrix")))
## https://math.nist.gov/MatrixMarket/data/Harwell-Boeing/counterx/counterx.htm
str(jgl <- readMM(system.file("external/jgl009.mtx" , package = "Matrix")))
## NOTE: The following examples take quite some time
## ---- even on a fast internet connection:
if(FALSE) {
## The URL has been corrected, but we need an untar step:
u. <- url("https://www.cise.ufl.edu/research/sparse/RB/Boeing/msc00726.tar.gz")
str(sm <- readHB(gzcon(u.)))
}
data(KNex, package = "Matrix")
## Store as MatrixMarket (".mtx") file, here inside temporary dir./folder:
(MMfile <- file.path(tempdir(), "mmMM.mtx"))
writeMM(KNex$mm, file=MMfile)
file.info(MMfile)[,c("size", "ctime")] # (some confirmation of the file's)
## very simple export - in triplet format - to text file:
data(CAex, package = "Matrix")
s.CA <- summary(CAex)
s.CA # shows (i, j, x) [columns of a data frame]
message("writing to ", outf <- tempfile())
write.table(s.CA, file = outf, row.names=FALSE)
## and read it back -- showing off sparseMatrix():
str(dd <- read.table(outf, header=TRUE))
## has columns (i, j, x) -> we can use via do.call() as arguments to sparseMatrix():
mm <- do.call(sparseMatrix, dd)
stopifnot(all.equal(mm, CAex, tolerance=1e-15))
Multiplication by Factors from Matrix Factorizations
Description
Multiplies a matrix or vector on the left or right by a factor from a matrix factorization or its transpose.
Usage
facmul(x, factor, y, trans = FALSE, left = TRUE, ...)
Arguments
x |
a |
factor |
a character string indicating a factor in the
factorization represented by |
y |
a matrix or vector to be multiplied on the left or right by the factor or its transpose. |
trans |
a logical indicating if the transpose of the factor should be used, rather than the factor itself. |
left |
a logical indicating if the |
... |
further arguments passed to or from methods. |
Details
facmul
is experimental and currently no methods are
exported from Matrix.
Value
The value of op(M) %*% y
or y %*% op(M)
,
depending on left
, where M
is the factor
(always without dimnames
) and op(M)
is M
or t(M)
, depending on trans
.
Examples
## Conceptually, methods for 'facmul' _would_ behave as follows ...
## Not run:
n <- 3L
x <- lu(Matrix(rnorm(n * n), n, n))
y <- rnorm(n)
L <- unname(expand2(x)[[nm <- "L"]])
stopifnot(exprs = {
all.equal(facmul(x, nm, y, trans = FALSE, left = TRUE), L %*% y)
all.equal(facmul(x, nm, y, trans = FALSE, left = FALSE), y %*% L)
all.equal(facmul(x, nm, y, trans = TRUE, left = TRUE), crossprod(L, y))
all.equal(facmul(x, nm, y, trans = TRUE, left = FALSE), tcrossprod(y, L))
})
## End(Not run)
“Low Level” Coercions and Methods
Description
“Semi-API” functions used internally by Matrix,
often to bypass S4 dispatch and avoid the associated overhead.
These are exported to provide this capability to expert users.
Typical users should continue to rely on S4 generic functions
to dispatch suitable methods, by calling,
e.g., as(., <class>)
for coercions.
Usage
.M2kind(from, kind = ".", sparse = NA)
.M2gen(from, kind = ".")
.M2sym(from, ...)
.M2tri(from, ...)
.M2diag(from)
.M2v(from)
.M2m(from)
.M2unpacked(from)
.M2packed(from)
.M2C(from)
.M2R(from)
.M2T(from)
.M2V(from)
.m2V(from, kind = ".")
.sparse2dense(from, packed = FALSE)
.diag2dense(from, kind = ".", shape = "t", packed = FALSE, uplo = "U")
.ind2dense(from, kind = "n")
.m2dense(from, class = ".ge", uplo = "U", diag = "N", trans = FALSE)
.dense2sparse(from, repr = "C")
.diag2sparse(from, kind = ".", shape = "t", repr = "C", uplo = "U")
.ind2sparse(from, kind = "n", repr = ".")
.m2sparse(from, class = ".gC", uplo = "U", diag = "N", trans = FALSE)
.tCRT(x, lazy = TRUE)
.diag.dsC(x, Chx = Cholesky(x, LDL = TRUE), res.kind = "diag")
.solve.dgC.lu (a, b, tol = .Machine$double.eps, check = TRUE)
.solve.dgC.qr (a, b, order = 3L, check = TRUE)
.solve.dgC.chol(a, b, check = TRUE)
.updateCHMfactor(object, parent, mult = 0)
Arguments
from , x , a , b |
a |
kind |
a string ( |
shape |
a string ( |
repr |
a string ( |
packed |
a logical indicating if the result should
inherit from |
sparse |
a logical indicating if the result should inherit
from |
uplo |
a string ( |
diag |
a string ( |
trans |
a logical indicating if the result should be a 1-row
matrix rather than a 1-column matrix where |
class |
a string whose first three characters specify the class
of the result. It should match the pattern
|
... |
optional arguments passed to |
lazy |
a logical indicating if the transpose should be constructed with minimal allocation, but possibly without preserving representation. |
Chx |
optionally, the |
res.kind |
a string in |
tol |
see |
order |
see |
check |
a logical indicating if the first argument should be
tested for inheritance from |
object |
a Cholesky factorization inheriting from virtual class
|
parent |
|
mult |
a numeric vector of postive length. Only the first element is used, and that must be finite. |
Details
Functions with names of the form .<A>2<B>
implement coercions
from virtual class A to the “nearest” non-virtual subclass of
virtual class B, where the virtual classes are abbreviated as follows:
M
V
m
matrix
v
vector
dense
unpacked
packed
sparse
C
R
T
gen
sym
tri
diag
ind
Abbreviations should be seen as a guide, rather than as an
exact description of behaviour. Notably, .m2dense
,
.m2sparse
, and .m2V
accept vectors that are
not matrices.
.tCRT(x)
If lazy = TRUE
, then .tCRT
constructs the transpose
of x
using the most efficient representation,
which for ‘CRT’ is ‘RCT’. If lazy = FALSE
,
then .tCRT
preserves the representation of x
,
behaving as the corresponding methods for generic function t
.
.diag.dsC(x)
.diag.dsC
computes (or uses if Chx
is supplied)
the Cholesky factorization of x
as L D L'
in order
to calculate one of several possible statistics from the diagonal
entries of D
. See res.kind
under ‘Arguments’.
.solve.dgC.*(a, b)
.solve.dgC.lu(a, b)
needs a square matrix a
.
.solve.dgC.qr(a, b)
needs a “long” matrix a
,
with nrow(a) >= ncol(a)
.
.solve.dgC.chol(a, b)
needs a “wide” matrix a
,
with nrow(a) <= ncol(a)
.
All three may be used to solve sparse linear systems directly.
Only .solve.dgC.qr
and .solve.dgC.chol
be used
to solve sparse least squares problems.
.updateCHMfactor(object, parent, mult)
.updateCHMfactor
updates object
with the result
of Cholesky factorizing
F(parent) + mult[1] * diag(nrow(parent))
,
i.e., F(parent)
plus mult[1]
times the identity matrix,
where F = identity
if parent
is a dsCMatrix
and F = tcrossprod
if parent
is a dgCMatrix
.
The nonzero pattern of F(parent)
must match
that of S
if object = Cholesky(S, ...)
.
Examples
D. <- diag(x = c(1, 1, 2, 3, 5, 8))
D.0 <- Diagonal(x = c(0, 0, 0, 3, 5, 8))
S. <- toeplitz(as.double(1:6))
C. <- new("dgCMatrix", Dim = c(3L, 4L),
p = c(0L, 1L, 1L, 1L, 3L), i = c(1L, 0L, 2L), x = c(-8, 2, 3))
stopifnot(exprs = {
identical(.M2tri (D.), as(D., "triangularMatrix"))
identical(.M2sym (D.), as(D., "symmetricMatrix"))
identical(.M2diag(D.), as(D., "diagonalMatrix"))
identical(.M2kind(C., "l"),
as(C., "lMatrix"))
identical(.M2kind(.sparse2dense(C.), "l"),
as(as(C., "denseMatrix"), "lMatrix"))
identical(.diag2sparse(D.0, ".", "t", "C"),
.dense2sparse(.diag2dense(D.0, ".", "t", TRUE), "C"))
identical(.M2gen(.diag2dense(D.0, ".", "s", FALSE)),
.sparse2dense(.M2gen(.diag2sparse(D.0, ".", "s", "T"))))
identical(S.,
.M2m(.m2sparse(S., ".sR")))
identical(S. * lower.tri(S.) + diag(1, 6L),
.M2m(.m2dense (S., ".tr", "L", "U")))
identical(.M2R(C.), .M2R(.M2T(C.)))
identical(.tCRT(C.), .M2R(t(C.)))
})
A <- tcrossprod(C.)/6 + Diagonal(3, 1/3); A[1,2] <- 3; A
stopifnot(exprs = {
is.numeric( x. <- c(2.2, 0, -1.2) )
all.equal(x., .solve.dgC.lu(A, c(1,0,0), check=FALSE))
all.equal(x., .solve.dgC.qr(A, c(1,0,0), check=FALSE))
})
## Solving sparse least squares:
X <- rbind(A, Diagonal(3)) # design matrix X (for L.S.)
Xt <- t(X) # *transposed* X (for L.S.)
(y <- drop(crossprod(Xt, 1:3)) + c(-1,1)/1000) # small rand.err.
str(solveCh <- .solve.dgC.chol(Xt, y, check=FALSE)) # Xt *is* dgC..
stopifnot(exprs = {
all.equal(solveCh$coef, 1:3, tol = 1e-3)# rel.err ~ 1e-4
all.equal(solveCh$coef, drop(solve(tcrossprod(Xt), Xt %*% y)))
all.equal(solveCh$coef, .solve.dgC.qr(X, y, check=FALSE))
})
Force a Matrix to 'symmetricMatrix' Without Symmetry Checks
Description
Force a square matrix x
to a symmetricMatrix
,
without a symmetry check as it would be applied for as(x,
"symmetricMatrix")
.
Usage
forceSymmetric(x, uplo)
Arguments
x |
any square matrix (of numbers), either “"traditional"”
( |
uplo |
optional string, |
Value
a square matrix inheriting from class
symmetricMatrix
.
See Also
symmpart
for the symmetric part of a matrix, or
the coercions as(x, <symmetricMatrix class>)
.
Examples
## Hilbert matrix
i <- 1:6
h6 <- 1/outer(i - 1L, i, "+")
sd <- sqrt(diag(h6))
hh <- t(h6/sd)/sd # theoretically symmetric
isSymmetric(hh, tol=0) # FALSE; hence
try( as(hh, "symmetricMatrix") ) # fails, but this works fine:
H6 <- forceSymmetric(hh)
## result can be pretty surprising:
(M <- Matrix(1:36, 6))
forceSymmetric(M) # symmetric, hence very different in lower triangle
(tm <- tril(M))
forceSymmetric(tm)
Formatting Sparse Numeric Matrices Utilities
Description
Utilities for formatting sparse numeric matrices in a flexible way.
These functions are used by the format
and print
methods for sparse matrices and can be applied as well to standard R
matrices. Note that all arguments but the first are optional.
formatSparseM()
is the main “workhorse” of
formatSpMatrix
, the format
method for sparse
matrices.
.formatSparseSimple()
is a simple helper function, also dealing
with (short/empty) column names construction.
Usage
formatSparseM(x, zero.print = ".", align = c("fancy", "right"),
m = as(x,"matrix"), asLogical=NULL, uniDiag=NULL,
digits=NULL, cx, iN0, dn = dimnames(m))
.formatSparseSimple(m, asLogical=FALSE, digits=NULL,
col.names, note.dropping.colnames = TRUE,
dn=dimnames(m))
Arguments
x |
an R object inheriting from class |
zero.print |
character which should be used for
structural zeroes. The default |
align |
a string specifying how the |
m |
(optional) a (standard R) |
asLogical |
should the matrix be formatted as a logical matrix
(or rather as a numeric one); mostly for |
uniDiag |
logical indicating if the diagonal entries of a sparse
unit triangular or unit-diagonal matrix should be formatted as
|
digits |
significant digits to use for printing, see
|
cx |
(optional) character matrix; a formatted version of |
iN0 |
(optional) integer vector, specifying the location of the
non-zeroes of |
col.names , note.dropping.colnames |
see |
dn |
|
Value
a character matrix like cx
, where the zeros have been replaced
with (padded versions of) zero.print
.
As this is a dense matrix, do not use these functions for
really large (really) sparse matrices!
Author(s)
Martin Maechler
See Also
formatSpMatrix
which calls formatSparseM()
and is
the format
method for sparse matrices.
printSpMatrix
which is used by the (typically
implicitly called) show
and print
methods
for sparse matrices.
Examples
m <- suppressWarnings(matrix(c(0, 3.2, 0,0, 11,0,0,0,0,-7,0), 4,9))
fm <- formatSparseM(m)
noquote(fm)
## nice, but this is nicer {with "units" vertically aligned}:
print(fm, quote=FALSE, right=TRUE)
## and "the same" as :
Matrix(m)
## align = "right" is cheaper --> the "." are not aligned:
noquote(f2 <- formatSparseM(m,align="r"))
stopifnot(f2 == fm | m == 0, dim(f2) == dim(m),
(f2 == ".") == (m == 0))
Class "generalMatrix" of General Matrices
Description
Virtual class of “general” matrices; i.e., matrices that do not have a known property such as symmetric, triangular, or diagonal.
Objects from the Class
A virtual Class: No objects may be created from it.
Slots
Dim, Dimnames
inherited from virtual class
Matrix
.factors
a list of
MatrixFactorization
objects caching factorizations of the matrix. Typically, it is initialized as an empty list and updated “automagically” whenever a factorization is computed.
Extends
Class "Matrix"
, directly.
See Also
Virtual classes
symmetricMatrix
,
triangularMatrix
, and
diagonalMatrix
.
Generate a Hilbert matrix
Description
Generate the n
by n
symmetric Hilbert matrix. Because
these matrices are ill-conditioned for moderate to large n
,
they are often used for testing numerical linear algebra code.
Usage
Hilbert(n)
Arguments
n |
a non-negative integer. |
Value
the n
by n
symmetric Hilbert matrix as a
"dpoMatrix"
object.
See Also
the class dpoMatrix
Examples
Hilbert(6)
Methods for image() in Package 'Matrix'
Description
Methods for function image
in package
Matrix. An image of a matrix simply color codes all matrix
entries and draws the n\times m
matrix using an
n\times m
grid of (colored) rectangles.
The Matrix package image
methods are based on
levelplot()
from package lattice; hence
these methods return an “object” of class "trellis"
,
producing a graphic when (auto-) print()
ed.
Usage
## S4 method for signature 'dgTMatrix'
image(x,
xlim = c(1, di[2]),
ylim = c(di[1], 1), aspect = "iso",
sub = sprintf("Dimensions: %d x %d", di[1], di[2]),
xlab = "Column", ylab = "Row", cuts = 15,
useRaster = FALSE,
useAbs = NULL, colorkey = !useAbs,
col.regions = NULL,
lwd = NULL, border.col = NULL, ...)
Arguments
x |
a Matrix object, i.e., fulfilling |
xlim , ylim |
x- and y-axis limits; may be used to “zoom
into” matrix. Note that |
aspect |
aspect ratio specified as number (y/x) or string;
see |
sub , xlab , ylab |
axis annotation with sensible defaults;
see |
cuts |
number of levels the range of matrix values would be divided into. |
useRaster |
logical indicating if raster graphics should be used
(instead of the tradition rectangle vector drawing). If true,
Note that using raster graphics may often be faster, but can be slower, depending on the matrix dimensions and the graphics device (dimensions). |
useAbs |
logical indicating if |
colorkey |
logical indicating if a color key aka ‘legend’
should be produced. Default is to draw one, unless |
col.regions |
vector of gradually varying colors; see
|
lwd |
(only used when |
border.col |
color for the border of each rectangle. |
... |
further arguments passed to methods and
|
Value
as all lattice graphics functions, image(<Matrix>)
returns a "trellis"
object, effectively the result of
levelplot()
.
Methods
All methods currently end up calling the method for the
dgTMatrix
class.
Use showMethods(image)
to list them all.
See Also
levelplot
, and
print.trellis
from package lattice.
Examples
showMethods(image)
## And if you want to see the method definitions:
showMethods(image, includeDefs = TRUE, inherited = FALSE)
data(CAex, package = "Matrix")
image(CAex, main = "image(CAex)") -> imgC; imgC
stopifnot(!is.null(leg <- imgC$legend), is.list(leg$right)) # failed for 2 days ..
image(CAex, useAbs=TRUE, main = "image(CAex, useAbs=TRUE)")
cCA <- Cholesky(crossprod(CAex), Imult = .01)
## See ?print.trellis --- place two image() plots side by side:
print(image(cCA, main="Cholesky(crossprod(CAex), Imult = .01)"),
split=c(x=1,y=1,nx=2, ny=1), more=TRUE)
print(image(cCA, useAbs=TRUE),
split=c(x=2,y=1,nx=2,ny=1))
data(USCounties, package = "Matrix")
image(USCounties)# huge
image(sign(USCounties))## just the pattern
# how the result looks, may depend heavily on
# the device, screen resolution, antialiasing etc
# e.g. x11(type="Xlib") may show very differently than cairo-based
## Drawing borders around each rectangle;
# again, viewing depends very much on the device:
image(USCounties[1:400,1:200], lwd=.1)
## Using (xlim,ylim) has advantage : matrix dimension and (col/row) indices:
image(USCounties, c(1,200), c(1,400), lwd=.1)
image(USCounties, c(1,300), c(1,200), lwd=.5 )
image(USCounties, c(1,300), c(1,200), lwd=.01)
## These 3 are all equivalent :
(I1 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE))
I2 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE, border.col=NA)
I3 <- image(USCounties, c(1,100), c(1,100), useAbs=FALSE, lwd=2, border.col=NA)
stopifnot(all.equal(I1, I2, check.environment=FALSE),
all.equal(I2, I3, check.environment=FALSE))
## using an opaque border color
image(USCounties, c(1,100), c(1,100), useAbs=FALSE, lwd=3, border.col = adjustcolor("skyblue", 1/2))
if(interactive() || nzchar(Sys.getenv("R_MATRIX_CHECK_EXTRA"))) {
## Using raster graphics: For PDF this would give a 77 MB file,
## however, for such a large matrix, this is typically considerably
## *slower* (than vector graphics rectangles) in most cases :
if(doPNG <- !dev.interactive())
png("image-USCounties-raster.png", width=3200, height=3200)
image(USCounties, useRaster = TRUE) # should not suffer from anti-aliasing
if(doPNG)
dev.off()
## and now look at the *.png image in a viewer you can easily zoom in and out
}#only if(doExtras)
Virtual Class “index” of Index Vectors
Description
Class index
is a virtual class designating index vectors,
or “subscripts”, for (possibly named) vectors and arrays.
It is typically used in signatures of methods for the subscript
and subassignment operators, namely [
and [<-
.
It is implemented as a union of the atomic vector classes
numeric
, logical
,
and character
.
See Also
[
, [-methods
, and
[<–methods
.
Examples
showClass("index")
Index Matrices
Description
The indMatrix
class is the class of row and column
index matrices, stored as 1-based integer index vectors.
A row (column) index matrix is a matrix whose rows (columns)
are standard unit vectors. Such matrices are useful
when mapping observations to discrete sets of covariate values.
Multiplying a matrix on the left by a row index matrix is equivalent to indexing its rows, i.e., sampling the rows “with replacement”. Analogously, multiplying a matrix on the right by a column index matrix is equivalent to indexing its columns. Indeed, such products are implemented in Matrix as indexing operations; see ‘Details’ below.
A matrix whose rows and columns are standard unit vectors
is called a permutation matrix. This special case is
designated by the pMatrix
class, a direct
subclass of indMatrix
.
Details
The transpose of an index matrix is an index matrix with identical
perm
but opposite margin
. Hence the transpose of a
row index matrix is a column index matrix, and vice versa.
The cross product of a row index matrix R
and itself is a
diagonal matrix whose diagonal entries are the the number of entries
in each column of R
.
Given a row index matrix R
with perm
slot p
,
a column index matrix C
with perm
slot q
,
and a matrix M
with conformable dimensions, we have
R M | = | R %*% M | = | M[p, ] |
M C | = | M %*% C | = | M[, q] |
C'M | = | crossprod(C, M) | = | M[q, ] |
MR' | = | tcrossprod(M, R) | = | M[, p] |
R'R | = | crossprod(R) | = | Diagonal(x=tabulate(p, ncol(R))) |
CC' | = | tcrossprod(C) | = | Diagonal(x=tabulate(q, nrow(C)))
|
Operations on index matrices that result in index matrices will
accordingly return an indMatrix
. These include products
of two column index matrices and (equivalently) column-indexing
of a column index matrix (when dimensions are not dropped).
Most other operations on indMatrix
treat them as sparse
nonzero pattern matrices (i.e., inheriting from virtual class
nsparseMatrix
). Hence vector-valued subsets
of indMatrix
, such as those given by diag
,
are always of type "logical"
.
Objects from the Class
Objects can be created explicitly with calls of the form
new("indMatrix", ...)
, but they are more commonly created
by coercing 1-based integer index vectors, with calls of the
form as(., "indMatrix")
; see ‘Methods’ below.
Slots
margin
an integer, either 1 or 2, specifying whether the matrix is a row (1) or column (2) index.
perm
a 1-based integer index vector, i.e., a vector of length
Dim[margin]
with elements taken from1:Dim[1+margin%%2]
.Dim
,Dimnames
inherited from virtual superclass
Matrix
.
Extends
Classes "sparseMatrix"
and
"generalMatrix"
, directly.
Methods
%*%
signature(x = "indMatrix", y = "Matrix")
and others listed byshowMethods("%*%", classes = "indMatrix")
: matrix products implemented where appropriate as indexing operations.coerce
signature(from = "numeric", to = "indMatrix")
: supporting typicalindMatrix
construction from a vector of positive integers. Row indexing is assumed.coerce
signature(from = "list", to = "indMatrix")
: supportingindMatrix
construction for row and column indexing, including index vectors of length 0 and index vectors whose maximum is less than the number of rows or columns being indexed.coerce
signature(from = "indMatrix", to = "matrix")
: coercion to a traditionalmatrix
of logical type, withFALSE
andTRUE
in place of 0 and 1.t
signature(x = "indMatrix")
: the transpose, which is anindMatrix
with identicalperm
but oppositemargin
.rowSums
,rowMeans
,colSums
,colMeans
signature(x = "indMatrix")
: row and column sums and means.rbind2
,cbind2
signature(x = "indMatrix", y = "indMatrix")
: row-wise catenation of two row index matrices with equal numbers of columns and column-wise catenation of two column index matrices with equal numbers of rows.- kronecker
signature(X = "indMatrix", Y = "indMatrix")
: Kronecker product of two row index matrices or two column index matrices, giving the row or column index matrix corresponding to their “interaction”.
Author(s)
Fabian Scheipl at ‘uni-muenchen.de’, building on the existing class
pMatrix
after a nice hike's conversation with
Martin Maechler. Methods for crossprod(x, y)
and
kronecker(x, y)
with both arguments inheriting from
indMatrix
were made considerably faster thanks to a suggestion
by Boris Vaillant. Diverse tweaks by Martin Maechler and
Mikael Jagan, notably the latter's implementation of margin
,
prior to which the indMatrix
class was designated only for
row index matrices.
See Also
Subclass pMatrix
of permutation matrices,
a special case of index matrices; virtual class
nMatrix
of nonzero pattern matrices,
and its subclasses.
Examples
p1 <- as(c(2,3,1), "pMatrix")
(sm1 <- as(rep(c(2,3,1), e=3), "indMatrix"))
stopifnot(all(sm1 == p1[rep(1:3, each=3),]))
## row-indexing of a <pMatrix> turns it into an <indMatrix>:
class(p1[rep(1:3, each=3),])
set.seed(12) # so we know '10' is in sample
## random index matrix for 30 observations and 10 unique values:
(s10 <- as(sample(10, 30, replace=TRUE),"indMatrix"))
## Sample rows of a numeric matrix :
(mm <- matrix(1:10, nrow=10, ncol=3))
s10 %*% mm
set.seed(27)
IM1 <- as(sample(1:20, 100, replace=TRUE), "indMatrix")
IM2 <- as(sample(1:18, 100, replace=TRUE), "indMatrix")
(c12 <- crossprod(IM1,IM2))
## same as cross-tabulation of the two index vectors:
stopifnot(all(c12 - unclass(table(IM1@perm, IM2@perm)) == 0))
# 3 observations, 4 implied values, first does not occur in sample:
as(2:4, "indMatrix")
# 3 observations, 5 values, first and last do not occur in sample:
as(list(2:4, 5), "indMatrix")
as(sm1, "nMatrix")
s10[1:7, 1:4] # gives an "ngTMatrix" (most economic!)
s10[1:4, ] # preserves "indMatrix"-class
I1 <- as(c(5:1,6:4,7:3), "indMatrix")
I2 <- as(7:1, "pMatrix")
(I12 <- rbind(I1, I2))
stopifnot(is(I12, "indMatrix"),
identical(I12, rbind(I1, I2)),
colSums(I12) == c(2L,2:4,4:2))
Utilities for Permutation Vectors
Description
invertPerm
and signPerm
compute the inverse and sign
of a length-n
permutation vector. isPerm
tests
if a length-n
integer vector is a valid permutation vector.
asPerm
coerces a length-m
transposition vector to a
length-n
permutation vector, where m <= n
.
Usage
invertPerm(p, off = 1L, ioff = 1L)
signPerm(p, off = 1L)
isPerm(p, off = 1L)
asPerm(pivot, off = 1L, ioff = 1L, n = length(pivot))
invPerm(p, zero.p = FALSE, zero.res = FALSE)
Arguments
p |
an integer vector of length |
pivot |
an integer vector of length |
off |
an integer offset, indicating that |
ioff |
an integer offset, indicating that the result
should be a permutation of |
n |
a integer greater than or equal to |
zero.p |
a logical. Equivalent to |
zero.res |
a logical. Equivalent to |
Details
invertPerm(p, off, ioff=1)
is equivalent to
order(p)
or sort.list(p)
for all values of off
. For the default value
off=1
, it returns the value of p
after
p[p] <- seq_along(p)
.
invPerm
is a simple wrapper around invertPerm
,
retained for backwards compatibility.
Value
By default, i.e., with off=1
and ioff=1
:
invertPerm(p)
returns an integer vector of length
length(p)
such that p[invertPerm(p)]
and invertPerm(p)[p]
are both seq_along(p)
,
i.e., the identity permutation.
signPerm(p)
returns 1 if p
is an even permutation
and -1
otherwise (i.e., if p
is odd).
isPerm(p)
returns TRUE
if p
is a
permutation of seq_along(p)
and FALSE
otherwise.
asPerm(pivot)
returns the result of transposing elements
i
and pivot[i]
of a permutation vector initialized
as seq_len(n)
, for i
in seq_along(pivot)
.
See Also
Class pMatrix
of permutation matrices.
Examples
p <- sample(10L) # a random permutation vector
ip <- invertPerm(p)
s <- signPerm(p)
## 'p' and 'ip' are indeed inverses:
stopifnot(exprs = {
isPerm(p)
isPerm(ip)
identical(s, 1L) || identical(s, -1L)
identical(s, signPerm(ip))
identical(p[ip], 1:10)
identical(ip[p], 1:10)
identical(invertPerm(ip), p)
})
## Product of transpositions (1 2)(2 1)(4 3)(6 8)(10 1) = (3 4)(6 8)(1 10)
pivot <- c(2L, 1L, 3L, 3L, 5L, 8L, 7L, 8L, 9L, 1L)
q <- asPerm(pivot)
stopifnot(exprs = {
identical(q, c(10L, 2L, 4L, 3L, 5L, 8L, 7L, 6L, 9L, 1L))
identical(q[q], seq_len(10L)) # because the permutation is odd:
signPerm(q) == -1L
})
invPerm # a less general version of 'invertPerm'
is.na(), is.finite() Methods for 'Matrix' Objects
Description
Methods for generic functions anyNA()
,
is.na()
, is.nan()
,
is.infinite()
, and is.finite()
,
for objects inheriting from virtual class
Matrix
or sparseVector
.
Usage
## S4 method for signature 'denseMatrix'
is.na(x)
## S4 method for signature 'sparseMatrix'
is.na(x)
## S4 method for signature 'diagonalMatrix'
is.na(x)
## S4 method for signature 'indMatrix'
is.na(x)
## S4 method for signature 'sparseVector'
is.na(x)
## ...
## and likewise for anyNA, is.nan, is.infinite, is.finite
Arguments
x |
an R object, here a sparse or dense matrix or vector. |
Value
For is.*()
, an nMatrix
or
nsparseVector
matching the dimensions
of x
and specifying the positions in x
of
(some subset of) NA
, NaN
,
Inf
, and -Inf
.
For anyNA
(), TRUE
if x
contains NA
or NaN
and FALSE
otherwise.
See Also
Examples
(M <- Matrix(1:6, nrow = 4, ncol = 3,
dimnames = list(letters[1:4], LETTERS[1:3])))
stopifnot(!anyNA(M), !any(is.na(M)))
M[2:3, 2] <- NA
(inM <- is.na(M))
stopifnot(anyNA(M), sum(inM) == 2)
(A <- spMatrix(nrow = 10, ncol = 20,
i = c(1, 3:8), j = c(2, 9, 6:10), x = 7 * (1:7)))
stopifnot(!anyNA(A), !any(is.na(A)))
A[2, 3] <- A[1, 2] <- A[5, 5:9] <- NA
(inA <- is.na(A))
stopifnot(anyNA(A), sum(inA) == 1 + 1 + 5)
Are the Dimnames dn
NULL-like ?
Description
Are the dimnames
dn
NULL
-like?
is.null.DN(dn)
is less strict than is.null(dn)
,
because it is also true (TRUE
) when the dimnames
dn
are “like” NULL
, or list(NULL,NULL)
, as
they can easily be for the traditional R matrices
(matrix
) which have no formal class
definition, and hence much freedom in how their dimnames
look like.
Usage
is.null.DN(dn)
Arguments
dn |
Value
Note
This function is really to be used on “traditional” matrices
rather than those inheriting from Matrix
, as
the latter will always have dimnames list(NULL,NULL)
exactly,
in such a case.
Author(s)
Martin Maechler
See Also
Examples
m1 <- m2 <- m3 <- m4 <- m <-
matrix(round(100 * rnorm(6)), 2, 3)
dimnames(m1) <- list(NULL, NULL)
dimnames(m2) <- list(NULL, character())
dimnames(m3) <- rev(dimnames(m2))
dimnames(m4) <- rep(list(character()),2)
m4 # prints absolutely identically to m
c.o <- capture.output
cm <- c.o(m)
stopifnot(exprs = {
m == m1; m == m2; m == m3; m == m4
identical(cm, c.o(m1)); identical(cm, c.o(m2))
identical(cm, c.o(m3)); identical(cm, c.o(m4))
})
hasNoDimnames <- function(.) is.null.DN(dimnames(.))
stopifnot(exprs = {
hasNoDimnames(m)
hasNoDimnames(m1); hasNoDimnames(m2)
hasNoDimnames(m3); hasNoDimnames(m4)
hasNoDimnames(Matrix(m) -> M)
hasNoDimnames(as(M, "sparseMatrix"))
})
Methods for Function 'isSymmetric' in Package 'Matrix'
Description
isSymmetric
tests whether its argument is a symmetric square
matrix, by default tolerating some numerical fuzz and requiring
symmetric [dD]imnames
in addition to symmetry in the
mathematical sense. isSymmetric
is a generic function in
base, which has a method for traditional
matrices of implicit class
"matrix"
.
Methods are defined here for various proper and virtual classes
in Matrix, so that isSymmetric
works for all objects
inheriting from virtual class "Matrix"
.
Usage
## S4 method for signature 'denseMatrix'
isSymmetric(object, checkDN = TRUE, ...)
## S4 method for signature 'CsparseMatrix'
isSymmetric(object, checkDN = TRUE, ...)
## S4 method for signature 'RsparseMatrix'
isSymmetric(object, checkDN = TRUE, ...)
## S4 method for signature 'TsparseMatrix'
isSymmetric(object, checkDN = TRUE, ...)
## S4 method for signature 'diagonalMatrix'
isSymmetric(object, checkDN = TRUE, ...)
## S4 method for signature 'indMatrix'
isSymmetric(object, checkDN = TRUE, ...)
## S4 method for signature 'dgeMatrix'
isSymmetric(object, checkDN = TRUE, tol = 100 * .Machine$double.eps, tol1 = 8 * tol, ...)
## S4 method for signature 'dgCMatrix'
isSymmetric(object, checkDN = TRUE, tol = 100 * .Machine$double.eps, ...)
Arguments
object |
a |
checkDN |
a logical indicating whether symmetry of the
|
tol , tol1 |
numerical tolerances allowing approximate
symmetry of numeric (rather than logical) matrices. See also
|
... |
further arguments passed to methods
(typically methods for |
Details
The Dimnames
slot of object
, say dn
,
is considered to be symmetric if and only if
-
dn[[1]]
anddn[[2]]
are identical or one isNULL
; and -
ndn <- names(dn)
isNULL
orndn[1]
andndn[2]
are identical or one is the empty string""
.
Hence list(a=nms, a=nms)
is considered to be symmetric,
and so too are list(a=nms, NULL)
and list(NULL, a=nms)
.
Note that this definition is looser than that employed by
isSymmetric.matrix
, which requires dn[1]
and
dn[2]
to be identical, where dn
is the dimnames
attribute of a traditional matrix.
Value
A logical, either TRUE
or FALSE
(never NA
).
See Also
forceSymmetric
;
symmpart
and skewpart
;
virtual class "symmetricMatrix"
and its subclasses.
Examples
isSymmetric(Diagonal(4)) # TRUE of course
M <- Matrix(c(1,2,2,1), 2,2)
isSymmetric(M) # TRUE (*and* of formal class "dsyMatrix")
isSymmetric(as(M, "generalMatrix")) # still symmetric, even if not "formally"
isSymmetric(triu(M)) # FALSE
## Look at implementations:
showMethods("isSymmetric", includeDefs = TRUE) # includes S3 generic from base
Test whether a Matrix is Triangular or Diagonal
Description
isTriangular
and isDiagonal
test whether their argument
is a triangular or diagonal matrix, respectively. Unlike the analogous
isSymmetric
, these two functions are generically
from Matrix rather than base
. Hence Matrix
defines methods for traditional matrices of implicit class
"matrix"
in addition to matrices inheriting from
virtual class "Matrix"
.
By our definition, triangular and diagonal matrices are square, i.e., they have the same number of rows and columns.
Usage
isTriangular(object, upper = NA, ...)
isDiagonal(object)
Arguments
object |
an R object, typically a matrix. |
upper |
a logical, either |
... |
further arguments passed to methods (currently unused by Matrix). |
Value
A logical, either TRUE
or FALSE
(never NA
).
If object
is triangular and upper
is NA
, then
isTriangular
returns TRUE
with an attribute
kind
, either "U"
or "L"
, indicating that
object
is upper or lower triangular, respectively.
Users should not rely on how kind
is determined for diagonal
matrices, which are both upper and lower triangular.
See Also
isSymmetric
;
virtual classes "triangularMatrix"
and
"diagonalMatrix"
and their subclasses.
Examples
isTriangular(Diagonal(4))
## is TRUE: a diagonal matrix is also (both upper and lower) triangular
(M <- Matrix(c(1,2,0,1), 2,2))
isTriangular(M) # TRUE (*and* of formal class "dtrMatrix")
isTriangular(as(M, "generalMatrix")) # still triangular, even if not "formally"
isTriangular(crossprod(M)) # FALSE
isDiagonal(matrix(c(2,0,0,1), 2,2)) # TRUE
## Look at implementations:
showMethods("isTriangular", includeDefs = TRUE)
showMethods("isDiagonal", includeDefs = TRUE)
Khatri-Rao Matrix Product
Description
Computes Khatri-Rao products for any kind of matrices.
The Khatri-Rao product is a column-wise Kronecker product. Originally introduced by Khatri and Rao (1968), it has many different applications, see Liu and Trenkler (2008) for a survey. Notably, it is used in higher-dimensional tensor decompositions, see Bader and Kolda (2008).
Usage
KhatriRao(X, Y = X, FUN = "*", sparseY = TRUE, make.dimnames = FALSE)
Arguments
X , Y |
matrices of with the same number of columns. |
FUN |
the (name of the) |
sparseY |
logical specifying if |
make.dimnames |
logical indicating if the result should inherit
|
Value
a "CsparseMatrix"
, say R
, the Khatri-Rao
product of X
(n \times k
) and Y
(m
\times k
), is of dimension (n\cdot m) \times k
,
where the j-th column, R[,j]
is the kronecker product
kronecker(X[,j], Y[,j])
.
Note
The current implementation is efficient for large sparse matrices.
Author(s)
Original by Michael Cysouw, Univ. Marburg; minor tweaks, bug fixes etc, by Martin Maechler.
References
Khatri, C. G., and Rao, C. Radhakrishna (1968) Solutions to Some Functional Equations and Their Applications to Characterization of Probability Distributions. Sankhya: Indian J. Statistics, Series A 30, 167–180.
Bader, Brett W, and Tamara G Kolda (2008) Efficient MATLAB Computations with Sparse and Factored Tensors. SIAM J. Scientific Computing 30, 205–231.
See Also
Examples
## Example with very small matrices:
m <- matrix(1:12,3,4)
d <- diag(1:4)
KhatriRao(m,d)
KhatriRao(d,m)
dimnames(m) <- list(LETTERS[1:3], letters[1:4])
KhatriRao(m,d, make.dimnames=TRUE)
KhatriRao(d,m, make.dimnames=TRUE)
dimnames(d) <- list(NULL, paste0("D", 1:4))
KhatriRao(m,d, make.dimnames=TRUE)
KhatriRao(d,m, make.dimnames=TRUE)
dimnames(d) <- list(paste0("d", 10*1:4), paste0("D", 1:4))
(Kmd <- KhatriRao(m,d, make.dimnames=TRUE))
(Kdm <- KhatriRao(d,m, make.dimnames=TRUE))
nm <- as(m, "nsparseMatrix")
nd <- as(d, "nsparseMatrix")
KhatriRao(nm,nd, make.dimnames=TRUE)
KhatriRao(nd,nm, make.dimnames=TRUE)
stopifnot(dim(KhatriRao(m,d)) == c(nrow(m)*nrow(d), ncol(d)))
## border cases / checks:
zm <- nm; zm[] <- FALSE # all FALSE matrix
stopifnot(all(K1 <- KhatriRao(nd, zm) == 0), identical(dim(K1), c(12L, 4L)),
all(K2 <- KhatriRao(zm, nd) == 0), identical(dim(K2), c(12L, 4L)))
d0 <- d; d0[] <- 0; m0 <- Matrix(d0[-1,])
stopifnot(all(K3 <- KhatriRao(d0, m) == 0), identical(dim(K3), dim(Kdm)),
all(K4 <- KhatriRao(m, d0) == 0), identical(dim(K4), dim(Kmd)),
all(KhatriRao(d0, d0) == 0), all(KhatriRao(m0, d0) == 0),
all(KhatriRao(d0, m0) == 0), all(KhatriRao(m0, m0) == 0),
identical(dimnames(KhatriRao(m, d0, make.dimnames=TRUE)), dimnames(Kmd)))
## a matrix with "structural" and non-structural zeros:
m01 <- new("dgCMatrix", i = c(0L, 2L, 0L, 1L), p = c(0L, 0L, 0L, 2L, 4L),
Dim = 3:4, x = c(1, 0, 1, 0))
D4 <- Diagonal(4, x=1:4) # "as" d
DU <- Diagonal(4)# unit-diagonal: uplo="U"
(K5 <- KhatriRao( d, m01))
K5d <- KhatriRao( d, m01, sparseY=FALSE)
K5Dd <- KhatriRao(D4, m01, sparseY=FALSE)
K5Ud <- KhatriRao(DU, m01, sparseY=FALSE)
(K6 <- KhatriRao(diag(3), t(m01)))
K6D <- KhatriRao(Diagonal(3), t(m01))
K6d <- KhatriRao(diag(3), t(m01), sparseY=FALSE)
K6Dd <- KhatriRao(Diagonal(3), t(m01), sparseY=FALSE)
stopifnot(exprs = {
all(K5 == K5d)
identical(cbind(c(7L, 10L), c(3L, 4L)),
which(K5 != 0, arr.ind = TRUE, useNames=FALSE))
identical(K5d, K5Dd)
identical(K6, K6D)
all(K6 == K6d)
identical(cbind(3:4, 1L),
which(K6 != 0, arr.ind = TRUE, useNames=FALSE))
identical(K6d, K6Dd)
})
Koenker-Ng Example Sparse Model Matrix and Response Vector
Description
A model matrix mm
and corresponding response vector y
used in an example by Koenker and Ng. The matrix mm
is a sparse
matrix with 1850 rows and 712 columns but only 8758 non-zero entries.
It is a "dgCMatrix"
object. The vector y
is just
numeric
of length 1850.
Usage
data(KNex)
References
Roger Koenker and Pin Ng (2003). SparseM: A sparse matrix package for R; J. of Statistical Software, 8 (6), doi:10.18637/jss.v008.i06
Examples
data(KNex, package = "Matrix")
class(KNex$mm)
dim(KNex$mm)
image(KNex$mm)
str(KNex)
system.time( # a fraction of a second
sparse.sol <- with(KNex, solve(crossprod(mm), crossprod(mm, y))))
head(round(sparse.sol,3))
## Compare with QR-based solution ("more accurate, but slightly slower"):
system.time(
sp.sol2 <- with(KNex, qr.coef(qr(mm), y) ))
all.equal(sparse.sol, sp.sol2, tolerance = 1e-13) # TRUE
Methods for Function 'kronecker()' in Package 'Matrix'
Description
Computes Kronecker products for objects inheriting from
"Matrix"
.
In order to preserver sparseness, we treat 0 * NA
as 0
,
not as NA
as usually in R (and as used for the
base function kronecker
).
Methods
- kronecker
signature(X = "Matrix", Y = "ANY")
.......- kronecker
signature(X = "ANY", Y = "Matrix")
.......- kronecker
signature(X = "diagonalMatrix", Y = "ANY")
.......- kronecker
signature(X = "sparseMatrix", Y = "ANY")
.......- kronecker
signature(X = "TsparseMatrix", Y = "TsparseMatrix")
.......- kronecker
signature(X = "dgTMatrix", Y = "dgTMatrix")
.......- kronecker
signature(X = "dtTMatrix", Y = "dtTMatrix")
.......- kronecker
signature(X = "indMatrix", Y = "indMatrix")
.......
Examples
(t1 <- spMatrix(5,4, x= c(3,2,-7,11), i= 1:4, j=4:1)) # 5 x 4
(t2 <- kronecker(Diagonal(3, 2:4), t1)) # 15 x 12
## should also work with special-cased logical matrices
l3 <- upper.tri(matrix(,3,3))
M <- Matrix(l3)
(N <- as(M, "nsparseMatrix")) # "ntCMatrix" (upper triangular)
N2 <- as(N, "generalMatrix") # (lost "t"riangularity)
MM <- kronecker(M,M)
NN <- kronecker(N,N) # "dtTMatrix" i.e. did keep
NN2 <- kronecker(N2,N2)
stopifnot(identical(NN,MM),
is(NN2, "sparseMatrix"), all(NN2 == NN),
is(NN, "triangularMatrix"))
Virtual Class "ldenseMatrix" of Dense Logical Matrices
Description
ldenseMatrix
is the virtual class of all dense logical
(S4) matrices. It extends both denseMatrix
and lMatrix
directly.
Slots
x
:logical vector containing the entries of the matrix.
Dim
,Dimnames
:see
Matrix
.
Extends
Class "lMatrix"
, directly.
Class "denseMatrix"
, directly.
Class "Matrix"
, by class "lMatrix"
.
Class "Matrix"
, by class "denseMatrix"
.
Methods
- as.vector
signature(x = "ldenseMatrix", mode = "missing")
: ...- which
signature(x = "ndenseMatrix")
, semantically equivalent to base functionwhich(x, arr.ind)
; for details, see thelMatrix
class documentation.
See Also
Class lgeMatrix
and the other subclasses.
Examples
showClass("ldenseMatrix")
as(diag(3) > 0, "ldenseMatrix")
Class "ldiMatrix" of Diagonal Logical Matrices
Description
The class "ldiMatrix"
of logical diagonal matrices.
Objects from the Class
Objects can be created by calls of the form new("ldiMatrix", ...)
but typically rather via Diagonal
.
Slots
x
:"logical"
vector.diag
:"character"
string, either "U" or "N", seeddiMatrix
.Dim
,Dimnames
:matrix dimension and
dimnames
, see theMatrix
class description.
Extends
Class "diagonalMatrix"
and
class "lMatrix"
, directly.
Class "sparseMatrix"
, by class "diagonalMatrix"
.
See Also
Classes ddiMatrix
and
diagonalMatrix
; function Diagonal
.
Examples
(lM <- Diagonal(x = c(TRUE,FALSE,FALSE)))
str(lM)#> gory details (slots)
crossprod(lM) # numeric
(nM <- as(lM, "nMatrix"))
crossprod(nM) # pattern sparse
Class "lgeMatrix" of General Dense Logical Matrices
Description
This is the class of general dense logical
matrices.
Slots
x
:Object of class
"logical"
. The logical values that constitute the matrix, stored in column-major order.Dim
,Dimnames
:The dimension (a length-2
"integer"
) and corresponding names (orNULL
), see theMatrix
class.factors
:Object of class
"list"
. A named list of factorizations that have been computed for the matrix.
Extends
Class "ldenseMatrix"
, directly.
Class "lMatrix"
, by class "ldenseMatrix"
.
Class "denseMatrix"
, by class "ldenseMatrix"
.
Class "Matrix"
, by class "ldenseMatrix"
.
Class "Matrix"
, by class "ldenseMatrix"
.
Methods
Currently, mainly t()
and coercion methods (for
as(.)
); use, e.g.,
showMethods(class="lgeMatrix")
for details.
See Also
Non-general logical dense matrix classes such as
ltrMatrix
, or lsyMatrix
;
sparse logical classes such as lgCMatrix
.
Examples
showClass("lgeMatrix")
str(new("lgeMatrix"))
set.seed(1)
(lM <- Matrix(matrix(rnorm(28), 4,7) > 0))# a simple random lgeMatrix
set.seed(11)
(lC <- Matrix(matrix(rnorm(28), 4,7) > 0))# a simple random lgCMatrix
as(lM, "CsparseMatrix")
Sparse logical matrices
Description
The lsparseMatrix
class is a virtual class
of logical sparse matrices, i.e., sparse matrices with entries
TRUE
, FALSE
, or NA
.
These can be stored in the “triplet” form (class
TsparseMatrix
, subclasses lgTMatrix
,
lsTMatrix
, and ltTMatrix
) or in compressed
column-oriented form (class CsparseMatrix
,
subclasses lgCMatrix
, lsCMatrix
, and ltCMatrix
)
or–rarely–in compressed row-oriented form (class
RsparseMatrix
, subclasses lgRMatrix
,
lsRMatrix
, and ltRMatrix
). The second letter in the
name of these non-virtual classes indicates g
eneral,
s
ymmetric, or t
riangular.
Details
Note that triplet stored (TsparseMatrix
) matrices
such as lgTMatrix
may contain duplicated pairs of indices
(i,j)
as for the corresponding numeric class
dgTMatrix
where for such pairs, the corresponding
x
slot entries are added. For logical matrices, the x
entries corresponding to duplicated index pairs (i,j)
are
“added” as well if the addition is defined as logical or
,
i.e., “TRUE + TRUE |-> TRUE
” and
“TRUE + FALSE |-> TRUE
”.
Note the use of asUniqueT()
for getting an internally
unique representation without duplicated (i,j)
entries.
Objects from the Class
Objects can be created by calls of the form new("lgCMatrix",
...)
and so on. More frequently objects are created by coercion of
a numeric sparse matrix to the logical form, e.g. in an expression
x != 0
.
The logical form is also used in the symbolic analysis phase of an algorithm involving sparse matrices. Such algorithms often involve two phases: a symbolic phase wherein the positions of the non-zeros in the result are determined and a numeric phase wherein the actual results are calculated. During the symbolic phase only the positions of the non-zero elements in any operands are of interest, hence any numeric sparse matrices can be treated as logical sparse matrices.
Slots
x
:Object of class
"logical"
, i.e., eitherTRUE
,NA
, orFALSE
.uplo
:Object of class
"character"
. Must be either "U", for upper triangular, and "L", for lower triangular. Present in the triangular and symmetric classes but not in the general class.diag
:Object of class
"character"
. Must be either"U"
, for unit triangular (diagonal is all ones), or"N"
for non-unit. The implicit diagonal elements are not explicitly stored whendiag
is"U"
. Present in the triangular classes only.p
:Object of class
"integer"
of pointers, one for each column (row), to the initial (zero-based) index of elements in the column. Present in compressed column-oriented and compressed row-oriented forms only.i
:Object of class
"integer"
of length nnzero (number of non-zero elements). These are the row numbers for each TRUE element in the matrix. All other elements are FALSE. Present in triplet and compressed column-oriented forms only.j
:Object of class
"integer"
of length nnzero (number of non-zero elements). These are the column numbers for each TRUE element in the matrix. All other elements are FALSE. Present in triplet and compressed row-oriented forms only.Dim
:Object of class
"integer"
- the dimensions of the matrix.
Methods
- coerce
signature(from = "dgCMatrix", to = "lgCMatrix")
- t
signature(x = "lgCMatrix")
: returns the transpose ofx
- which
signature(x = "lsparseMatrix")
, semantically equivalent to base functionwhich(x, arr.ind)
; for details, see thelMatrix
class documentation.
See Also
the class dgCMatrix
and dgTMatrix
Examples
(m <- Matrix(c(0,0,2:0), 3,5, dimnames=list(LETTERS[1:3],NULL)))
(lm <- (m > 1)) # lgC
!lm # no longer sparse
stopifnot(is(lm,"lsparseMatrix"),
identical(!lm, m <= 1))
data(KNex, package = "Matrix")
str(mmG.1 <- (KNex $ mm) > 0.1)# "lgC..."
table(mmG.1@x)# however with many ``non-structural zeros''
## from logical to nz_pattern -- okay when there are no NA's :
nmG.1 <- as(mmG.1, "nMatrix") # <<< has "TRUE" also where mmG.1 had FALSE
## from logical to "double"
dmG.1 <- as(mmG.1, "dMatrix") # has '0' and back:
lmG.1 <- as(dmG.1, "lMatrix")
stopifnot(identical(nmG.1, as((KNex $ mm) != 0,"nMatrix")),
validObject(lmG.1),
identical(lmG.1, mmG.1))
class(xnx <- crossprod(nmG.1))# "nsC.."
class(xlx <- crossprod(mmG.1))# "dsC.." : numeric
is0 <- (xlx == 0)
mean(as.vector(is0))# 99.3% zeros: quite sparse, but
table(xlx@x == 0)# more than half of the entries are (non-structural!) 0
stopifnot(isSymmetric(xlx), isSymmetric(xnx),
## compare xnx and xlx : have the *same* non-structural 0s :
sapply(slotNames(xnx),
function(n) identical(slot(xnx, n), slot(xlx, n))))
Symmetric Dense Logical Matrices
Description
The "lsyMatrix"
class is the class of symmetric, dense logical
matrices in non-packed storage and "lspMatrix"
is the class of
of these in packed storage. In the packed form, only the upper
triangle or the lower triangle is stored.
Objects from the Class
Objects can be created by calls of the form new("lsyMatrix", ...)
.
Slots
uplo
:Object of class
"character"
. Must be either "U", for upper triangular, and "L", for lower triangular.x
:Object of class
"logical"
. The logical values that constitute the matrix, stored in column-major order.Dim
,Dimnames
:The dimension (a length-2
"integer"
) and corresponding names (orNULL
), see theMatrix
class.factors
:Object of class
"list"
. A named list of factorizations that have been computed for the matrix.
Extends
Both extend classes "ldenseMatrix"
and
"symmetricMatrix"
, directly; further, class
"Matrix"
and others, indirectly. Use
showClass("lsyMatrix")
, e.g., for details.
Methods
Currently, mainly t()
and coercion methods (for
as(.)
; use, e.g.,
showMethods(class="lsyMatrix")
for details.
See Also
Examples
(M2 <- Matrix(c(TRUE, NA, FALSE, FALSE), 2, 2)) # logical dense (ltr)
str(M2)
# can
(sM <- M2 | t(M2)) # "lge"
as(sM, "symmetricMatrix")
str(sM <- as(sM, "packedMatrix")) # packed symmetric
Triangular Dense Logical Matrices
Description
The "ltrMatrix"
class is the class of triangular, dense,
logical matrices in nonpacked storage. The "ltpMatrix"
class
is the same except in packed storage.
Slots
x
:Object of class
"logical"
. The logical values that constitute the matrix, stored in column-major order.uplo
:Object of class
"character"
. Must be either "U", for upper triangular, and "L", for lower triangular.diag
:Object of class
"character"
. Must be either"U"
, for unit triangular (diagonal is all ones), or"N"
; seetriangularMatrix
.Dim
,Dimnames
:The dimension (a length-2
"integer"
) and corresponding names (orNULL
), see theMatrix
class.factors
:Object of class
"list"
. A named list of factorizations that have been computed for the matrix.
Extends
Both extend classes "ldenseMatrix"
and
"triangularMatrix"
, directly; further, class
"Matrix"
, "lMatrix"
and others,
indirectly. Use showClass("ltrMatrix")
, e.g.,
for details.
Methods
Currently, mainly t()
and coercion methods (for
as(.)
; use, e.g.,
showMethods(class="ltrMatrix")
for details.
See Also
Classes lgeMatrix
, Matrix
;
function t
Examples
showClass("ltrMatrix")
str(new("ltpMatrix"))
(lutr <- as(upper.tri(matrix(, 4, 4)), "ldenseMatrix"))
str(lutp <- pack(lutr)) # packed matrix: only 10 = 4*(4+1)/2 entries
!lutp # the logical negation (is *not* logical triangular !)
## but this one is:
stopifnot(all.equal(lutp, pack(!!lutp)))
Methods for LU Factorization
Description
Computes the pivoted LU factorization of an m \times n
real matrix A
, which has the general form
P_{1} A P_{2} = L U
or (equivalently)
A = P_{1}' L U P_{2}'
where
P_{1}
is an m \times m
permutation matrix,
P_{2}
is an n \times n
permutation matrix,
L
is an m \times \min(m,n)
unit lower trapezoidal matrix, and
U
is a \min(m,n) \times n
upper trapezoidal matrix.
Methods for denseMatrix
are built on
LAPACK routine dgetrf
, which does not permute columns,
so that P_{2}
is an identity matrix.
Methods for sparseMatrix
are built on
CXSparse routine cs_lu
, which requires m = n
,
so that L
and U
are triangular matrices.
Usage
lu(x, ...)
## S4 method for signature 'dgeMatrix'
lu(x, warnSing = TRUE, ...)
## S4 method for signature 'dgCMatrix'
lu(x, errSing = TRUE, order = NA_integer_,
tol = 1, ...)
## S4 method for signature 'dsyMatrix'
lu(x, cache = TRUE, ...)
## S4 method for signature 'dsCMatrix'
lu(x, cache = TRUE, ...)
## S4 method for signature 'matrix'
lu(x, ...)
Arguments
x |
a finite matrix or
|
warnSing |
a logical indicating if a warning should
be signaled for singular |
errSing |
a logical indicating if an error should
be signaled for singular |
order |
an integer in |
tol |
a number. The original pivot element is used
if its absolute value exceeds |
cache |
a logical indicating if the result should be
cached in |
... |
further arguments passed to or from methods. |
Details
What happens when x
is determined to be near-singular
differs by method. The method for class dgeMatrix
completes the factorization, warning if warnSing = TRUE
and in any case returning a valid denseLU
object. Users of this method can detect singular x
with
a suitable warning handler; see tryCatch
.
In contrast, the method for class dgCMatrix
abandons further computation, throwing an error if errSing = TRUE
and otherwise returning NA
. Users of this method can
detect singular x
with an error handler or by setting
errSing = FALSE
and testing for a formal result with
is(., "sparseLU")
.
Value
An object representing the factorization, inheriting from
virtual class LU
. The specific class
is denseLU
unless x
inherits
from virtual class sparseMatrix
,
in which case it is sparseLU
.
References
The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dgetrf.f.
Davis, T. A. (2006). Direct methods for sparse linear systems. Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898718881
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
Classes denseLU
and
sparseLU
and their methods.
Classes dgeMatrix
and
dgCMatrix
.
Generic functions expand1
and expand2
,
for constructing matrix factors from the result.
Generic functions Cholesky
, BunchKaufman
,
Schur
, and qr
,
for computing other factorizations.
Examples
showMethods("lu", inherited = FALSE)
set.seed(0)
## ---- Dense ----------------------------------------------------------
(A1 <- Matrix(rnorm(9L), 3L, 3L))
(lu.A1 <- lu(A1))
(A2 <- round(10 * A1[, -3L]))
(lu.A2 <- lu(A2))
## A ~ P1' L U in floating point
str(e.lu.A2 <- expand2(lu.A2), max.level = 2L)
stopifnot(all.equal(A2, Reduce(`%*%`, e.lu.A2)))
## ---- Sparse ---------------------------------------------------------
A3 <- as(readMM(system.file("external/pores_1.mtx", package = "Matrix")),
"CsparseMatrix")
(lu.A3 <- lu(A3))
## A ~ P1' L U P2' in floating point
str(e.lu.A3 <- expand2(lu.A3), max.level = 2L)
stopifnot(all.equal(A3, Reduce(`%*%`, e.lu.A3)))
Map Matrix to its Triplet Representation
Description
From an R object coercible to "TsparseMatrix"
,
typically a (sparse) matrix, produce its triplet representation which may
collapse to a “Duplet” in the case of binary aka pattern, such as
"nMatrix"
objects.
Usage
mat2triplet(x, uniqT = FALSE)
Arguments
x |
any R object for which |
uniqT |
|
Value
A list
, typically with three components,
i |
vector of row indices for all non-zero entries of |
i |
vector of columns indices for all non-zero entries of |
x |
vector of all non-zero entries of |
Note that the order
of the entries is determined by the
coercion to "TsparseMatrix"
and hence typically
with increasing j
(and increasing i
within ties of j
).
Note
The mat2triplet()
utility was created to be a more efficient and
more predictable substitute for summary(<sparseMatrix>)
.
UseRs have wrongly expected the latter to return a data frame with
columns i
and j
which however is wrong for a
"diagonalMatrix"
.
See Also
The summary()
method for "sparseMatrix"
,
summary,sparseMatrix-method
.
mat2triplet()
is conceptually the inverse function of
spMatrix
and (one case of) sparseMatrix
.
Examples
mat2triplet # simple definition
i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
(Ax <- sparseMatrix(i, j, x = x)) ## 8 x 10 "dgCMatrix"
str(trA <- mat2triplet(Ax))
stopifnot(i == sort(trA$i), sort(j) == trA$j, x == sort(trA$x))
D <- Diagonal(x=4:2)
summary(D)
str(mat2triplet(D))
Matrix (Cross) Products (of Transpose)
Description
The basic matrix product, %*%
is implemented for all our
Matrix
and also for
sparseVector
classes, fully analogously to R's
base matrix
and vector objects.
The functions crossprod
and tcrossprod
are
matrix products or “cross products”, ideally implemented
efficiently without computing t(.)
's unnecessarily.
They also return symmetricMatrix
classed
matrices when easily detectable, e.g., in crossprod(m)
, the one
argument case.
tcrossprod()
takes the cross-product of the transpose of a matrix.
tcrossprod(x)
is formally equivalent to, but faster than, the
call x %*% t(x)
, and so is tcrossprod(x, y)
instead of
x %*% t(y)
.
Boolean matrix products are computed via either
%&%
or boolArith = TRUE
.
Usage
## S4 method for signature 'CsparseMatrix,diagonalMatrix'
x %*% y
## S4 method for signature 'CsparseMatrix,diagonalMatrix'
crossprod(x, y = NULL, boolArith = NA, ...)
## .... and for many more signatures
## S4 method for signature 'TsparseMatrix,missing'
tcrossprod(x, y = NULL, boolArith = NA, ...)
## .... and for many more signatures
Arguments
x |
a matrix-like object |
y |
a matrix-like object, or for |
boolArith |
|
... |
potentially more arguments passed to and from methods. |
Details
For some classes in the Matrix
package, such as
dgCMatrix
, it is much faster to calculate the
cross-product of the transpose directly instead of calculating the
transpose first and then its cross-product.
boolArith = TRUE
for regular (“non cross”) matrix
products, %*%
cannot be specified. Instead, we provide the
%&%
operator for boolean matrix products.
Value
A Matrix
object, in the one argument case
of an appropriate symmetric matrix class, i.e., inheriting from
symmetricMatrix
.
Methods
- %*%
signature(x = "dgeMatrix", y = "dgeMatrix")
: Matrix multiplication; ditto for several other signature combinations, seeshowMethods("%*%", class = "dgeMatrix")
.- %*%
signature(x = "dtrMatrix", y = "matrix")
and other signatures (useshowMethods("%*%", class="dtrMatrix")
): matrix multiplication. Multiplication of (matching) triangular matrices now should remain triangular (in the sense of class triangularMatrix).- crossprod
signature(x = "dgeMatrix", y = "dgeMatrix")
: ditto for several other signatures, useshowMethods("crossprod", class = "dgeMatrix")
, matrix crossproduct, an efficient version oft(x) %*% y
.- crossprod
signature(x = "CsparseMatrix", y = "missing")
returnst(x) %*% x
as andsCMatrix
object.- crossprod
signature(x = "TsparseMatrix", y = "missing")
returnst(x) %*% x
as andsCMatrix
object.- crossprod,tcrossprod
signature(x = "dtrMatrix", y = "matrix")
and other signatures, see"%*%"
above.
Note
boolArith = TRUE
, FALSE
or NA
has been newly
introduced for Matrix 1.2.0 (March 2015). Its implementation
has still not been tested extensively. Notably the behaviour for
sparse matrices with x
slots containing extra zeros had not been
documented previously, see the %&%
help page.
Currently, boolArith = TRUE
is implemented via
CsparseMatrix
coercions which may be quite
inefficient for dense matrices. Contributions for efficiency
improvements are welcome.
See Also
tcrossprod
in R's base, and
crossprod
and %*%
.
Matrix package %&%
for boolean matrix product
methods.
Examples
## A random sparse "incidence" matrix :
m <- matrix(0, 400, 500)
set.seed(12)
m[runif(314, 0, length(m))] <- 1
mm <- as(m, "CsparseMatrix")
object.size(m) / object.size(mm) # smaller by a factor of > 200
## tcrossprod() is very fast:
system.time(tCmm <- tcrossprod(mm))# 0 (PIII, 933 MHz)
system.time(cm <- crossprod(t(m))) # 0.16
system.time(cm. <- tcrossprod(m)) # 0.02
stopifnot(cm == as(tCmm, "matrix"))
## show sparse sub matrix
tCmm[1:16, 1:30]
Construct a Classed Matrix
Description
Construct a Matrix of a class that inherits from Matrix
.
Usage
Matrix(data=NA, nrow=1, ncol=1, byrow=FALSE, dimnames=NULL,
sparse = NULL, doDiag = TRUE, forceCheck = FALSE)
Arguments
data |
an optional numeric data vector or matrix. |
nrow |
when |
ncol |
when |
byrow |
logical. If |
dimnames |
a |
sparse |
logical or |
doDiag |
logical indicating if a Otherwise, if |
forceCheck |
logical indicating if the checks for structure
should even happen when |
Details
If either of nrow
or ncol
is not given, an attempt is
made to infer it from the length of data
and the other
parameter.
Further, Matrix()
makes efforts to keep logical
matrices logical, i.e., inheriting from class lMatrix
,
and to determine specially structured matrices such as symmetric,
triangular or diagonal ones. Note that a symmetric matrix also
needs symmetric dimnames
, e.g., by specifying
dimnames = list(NULL,NULL)
, see the examples.
Most of the time, the function works via a traditional (full)
matrix
. However, Matrix(0, nrow,ncol)
directly
constructs an “empty” sparseMatrix, as does
Matrix(FALSE, *)
.
Although it is sometime possible to mix unclassed matrices (created
with matrix
) with ones of class "Matrix"
, it is much
safer to always use carefully constructed ones of class
"Matrix"
.
Value
Returns matrix of a class that inherits from "Matrix"
.
Only if data
is not a matrix
and does not already inherit
from class Matrix
are the arguments
nrow
, ncol
and byrow
made use of.
See Also
The classes Matrix
,
symmetricMatrix
,
triangularMatrix
, and
diagonalMatrix
; further,
matrix
.
Special matrices can be constructed, e.g., via
sparseMatrix
(sparse), bdiag
(block-diagonal), bandSparse
(banded sparse), or
Diagonal
.
Examples
Matrix(0, 3, 2) # 3 by 2 matrix of zeros -> sparse
Matrix(0, 3, 2, sparse=FALSE)# -> 'dense'
## 4 cases - 3 different results :
Matrix(0, 2, 2) # diagonal !
Matrix(0, 2, 2, sparse=FALSE)# (ditto)
Matrix(0, 2, 2, doDiag=FALSE)# -> sparse symm. "dsCMatrix"
Matrix(0, 2, 2, sparse=FALSE, doDiag=FALSE)# -> dense symm. "dsyMatrix"
Matrix(1:6, 3, 2) # a 3 by 2 matrix (+ integer warning)
Matrix(1:6 + 1, nrow=3)
## logical ones:
Matrix(diag(4) > 0) # -> "ldiMatrix" with diag = "U"
Matrix(diag(4) > 0, sparse=TRUE) # (ditto)
Matrix(diag(4) >= 0) # -> "lsyMatrix" (of all 'TRUE')
## triangular
l3 <- upper.tri(matrix(,3,3))
(M <- Matrix(l3)) # -> "ltCMatrix"
Matrix(! l3) # -> "ltrMatrix"
as(l3, "CsparseMatrix")# "lgCMatrix"
Matrix(1:9, nrow=3,
dimnames = list(c("a", "b", "c"), c("A", "B", "C")))
(I3 <- Matrix(diag(3)))# identity, i.e., unit "diagonalMatrix"
str(I3) # note 'diag = "U"' and the empty 'x' slot
(A <- cbind(a=c(2,1), b=1:2))# symmetric *apart* from dimnames
Matrix(A) # hence 'dgeMatrix'
(As <- Matrix(A, dimnames = list(NULL,NULL)))# -> symmetric
forceSymmetric(A) # also symmetric, w/ symm. dimnames
stopifnot(is(As, "symmetricMatrix"),
is(Matrix(0, 3,3), "sparseMatrix"),
is(Matrix(FALSE, 1,1), "sparseMatrix"))
Virtual Class "Matrix" of Matrices
Description
The Matrix
class is a class contained by all actual
classes in the Matrix package. It is a “virtual” class.
Slots
Dim
an integer vector of length 2 giving the dimensions of the matrix.
Dimnames
a list of length 2. Each element must be
NULL
or a character vector of length equal to the corresponding element ofDim
.
Methods
- determinant
signature(x = "Matrix", logarithm = "missing")
: and- determinant
signature(x = "Matrix", logarithm = "logical")
: compute the (\log
) determinant ofx
. The method chosen depends on the actual Matrix class ofx
. Note thatdet
also works for all our matrices, calling the appropriatedeterminant()
method. TheMatrix::det
is an exact copy ofbase::det
, but in the correct namespace, and hence calling the S4-aware version ofdeterminant()
.).- diff
signature(x = "Matrix")
: Asdiff()
for traditional matrices, i.e., applyingdiff()
to each column.- dim
signature(x = "Matrix")
: extract matrix dimensionsdim
.- dim<-
signature(x = "Matrix", value = "ANY")
: wherevalue
is integer of length 2. Allows to reshape Matrix objects, but only whenprod(value) == prod(dim(x))
.- dimnames
signature(x = "Matrix")
: extractdimnames
.- dimnames<-
signature(x = "Matrix", value = "list")
: set thedimnames
to alist
of length 2, seedimnames<-
.- length
signature(x = "Matrix")
: simply defined asprod(dim(x))
(and hence of mode"double"
).- show
signature(object = "Matrix")
:show
method forprint
ing. For printing sparse matrices, seeprintSpMatrix
.- zapsmall
signature(x = "Matrix")
: typically used for"dMatrix"
:round()
matrix entries such that (relatively) very small entries become zero exactly.- image
signature(object = "Matrix")
: draws animage
of the matrix entries, usinglevelplot()
from package lattice.- head
signature(object = "Matrix")
: return only the “head”, i.e., the first few rows.- tail
signature(object = "Matrix")
: return only the “tail”, i.e., the last few rows of the respective matrix.
- as.matrix, as.array
signature(x = "Matrix")
: the same asas(x, "matrix")
; see also the note below.- as.vector
signature(x = "Matrix", mode = "missing")
:as.vector(m)
should be identical toas.vector(as(m, "matrix"))
, implemented more efficiently for some subclasses.- as(x, "vector"), as(x, "numeric")
etc, similarly.
- coerce
signature(from = "ANY", to = "Matrix")
: This relies on a correctas.matrix()
method forfrom
.
There are many more methods that (conceptually should) work for all
"Matrix"
objects, e.g., colSums
,
rowMeans
. Even base functions may work
automagically (if they first call as.matrix()
on their
principal argument), e.g., apply
, eigen
,
svd
or kappa
all do work via coercion to a
“traditional” (dense) matrix
.
Note
Loading the Matrix
namespace “overloads”
as.matrix
and as.array
in the base
namespace by the equivalent of function(x) as(x, "matrix")
.
Consequently, as.matrix(m)
or as.array(m)
will properly
work when m
inherits from the "Matrix"
class —
also for functions in package base and other packages.
E.g., apply
or outer
can therefore be applied
to "Matrix"
matrices.
Author(s)
Douglas Bates bates@stat.wisc.edu and Martin Maechler
See Also
the classes dgeMatrix
,
dgCMatrix
, and function
Matrix
for construction (and examples).
Methods, e.g., for kronecker
.
Examples
slotNames("Matrix")
cl <- getClass("Matrix")
names(cl@subclasses) # more than 40 ..
showClass("Matrix")#> output with slots and all subclasses
(M <- Matrix(c(0,1,0,0), 6, 4))
dim(M)
diag(M)
cm <- M[1:4,] + 10*Diagonal(4)
diff(M)
## can reshape it even :
dim(M) <- c(2, 12)
M
stopifnot(identical(M, Matrix(c(0,1,0,0), 2,12)),
all.equal(det(cm),
determinant(as(cm,"matrix"), log=FALSE)$modulus,
check.attributes=FALSE))
Defunct Functions in Package Matrix
Description
The functions or variables listed here are no longer part of Matrix as they are no longer needed.
Usage
## Defunct in 1.3-3
rBind(..., deparse.level = 1)
cBind(..., deparse.level = 1)
Details
These either are stubs reporting that they are defunct, or have been removed completely (apart from being documented here).
rBind
and cBind
were provided for R versions
older than 3.2.0 as substitutes for the base analogues
rbind
and cbind
, which at that time were not
“S4-aware” and so could not be used to vertically or
horizontally concatenate "Matrix"
objects
together with traditional matrices and vectors.
See Also
Defunct
,
base-defunct
,
Matrix-deprecated
Deprecated Functions in Package Matrix
Description
These functions are provided for compatibility with older versions of Matrix only and may be defunct as soon as the next release.
Usage
## Deprecated in 1.5-4
..2dge(from)
.C2nC(from, isTri)
.T2Cmat(from, isTri)
.asmatrix(x)
.dense2sy(from, ...)
.diag2mat(from)
.diag2sT(from, uplo = "U", kind = ".", drop0 = TRUE)
.diag2tT(from, uplo = "U", kind = ".", drop0 = TRUE)
.dsy2dsp(from)
.dsy2mat(from, keep.dimnames = TRUE)
.dxC2mat(from, chkUdiag)
.m2dgC(from)
.m2lgC(from)
.m2ngC(from)
.m2ngCn(from, na.is.not.0 = FALSE)
.m2ngTn(from, na.is.not.0 = FALSE)
.n2dgT(from)
.nC2d(from)
.nC2l(from)
## Deprecated in 1.5-0
## S4 method for signature 'RsparseMatrix,dgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ddenseMatrix,dgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ddiMatrix,dgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ddiMatrix,dgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ddiMatrix,dtCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgCMatrix,dgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgCMatrix,dgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgCMatrix,dsCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgCMatrix,dtCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgCMatrix,lgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgCMatrix,ngCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgTMatrix,dgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgTMatrix,dgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgTMatrix,dsTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgTMatrix,dtCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgTMatrix,dtTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgeMatrix,dgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgeMatrix,dgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgeMatrix,dsTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgeMatrix,dspMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgeMatrix,dsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgeMatrix,dtrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dgeMatrix,lgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsCMatrix,dgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsCMatrix,dgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsCMatrix,dgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsCMatrix,dsRMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsCMatrix,dsTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsCMatrix,dsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsCMatrix,lsCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsCMatrix,nsCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsTMatrix,dgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsTMatrix,dgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsTMatrix,dsCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsTMatrix,dsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsTMatrix,lsTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dspMatrix,dsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dspMatrix,lspMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsyMatrix,dsCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsyMatrix,dsTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsyMatrix,dspMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dsyMatrix,lsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtCMatrix,dgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtCMatrix,dgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtCMatrix,dgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtCMatrix,dsCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtCMatrix,dtTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtCMatrix,dtrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtCMatrix,ltCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtCMatrix,ntCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtTMatrix,dgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtTMatrix,dgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtTMatrix,dtCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtTMatrix,dtrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtpMatrix,dtTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtpMatrix,dtrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtpMatrix,ltpMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtrMatrix,dtpMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'dtrMatrix,ltrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'indMatrix,ngTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'indMatrix,ngeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lMatrix,dgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgCMatrix,dgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgCMatrix,lgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgCMatrix,lgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgCMatrix,ltCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgTMatrix,dgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgTMatrix,lgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgTMatrix,lgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgTMatrix,lsCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgTMatrix,ltTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgeMatrix,dgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgeMatrix,lgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgeMatrix,lgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgeMatrix,lspMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgeMatrix,lsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgeMatrix,ltpMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lgeMatrix,ltrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lsCMatrix,dsCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lsCMatrix,lgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lsCMatrix,lgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lsCMatrix,lsTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lsTMatrix,lgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lsTMatrix,lgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lsTMatrix,lsCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lsTMatrix,lsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lspMatrix,dspMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lspMatrix,lgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lspMatrix,lsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lsyMatrix,dsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lsyMatrix,lgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'lsyMatrix,lspMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ltCMatrix,lgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ltCMatrix,ltTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ltTMatrix,dtTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ltTMatrix,lgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ltTMatrix,lgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ltTMatrix,ltCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ltTMatrix,ltrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ltpMatrix,dtpMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ltpMatrix,lgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ltpMatrix,ltrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ltrMatrix,dtrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ltrMatrix,lgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ltrMatrix,ltpMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,dgRMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,dgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,dgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,dsCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,dsTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,dspMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,dsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,dtCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,dtTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,dtpMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,dtrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,lgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,lgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,lgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,lsCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,lspMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,lsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,ltCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,ltTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,ltpMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,ltrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,ngCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,ngTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,ngeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,nspMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,nsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,ntCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,ntTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,ntpMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'matrix,ntrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngCMatrix,dgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngCMatrix,lgCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngCMatrix,ntCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngTMatrix,dgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngTMatrix,lgTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngTMatrix,lgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngTMatrix,ngCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngTMatrix,ngeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngTMatrix,ntTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngeMatrix,dgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngeMatrix,lgeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngeMatrix,ngCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngeMatrix,ngTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngeMatrix,nspMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngeMatrix,nsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngeMatrix,ntpMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ngeMatrix,ntrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nsCMatrix,dsCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nsCMatrix,lsCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nsCMatrix,ngCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nsCMatrix,nsTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nsTMatrix,dsTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nsTMatrix,ngCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nsTMatrix,ngTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nsTMatrix,nsCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nsTMatrix,nsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nspMatrix,dspMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nspMatrix,lspMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nspMatrix,ngeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nspMatrix,nsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nsyMatrix,dsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nsyMatrix,lsyMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nsyMatrix,ngeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'nsyMatrix,nspMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntCMatrix,dtCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntCMatrix,ltCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntCMatrix,ngCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntTMatrix,dtTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntTMatrix,ngCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntTMatrix,ngTMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntTMatrix,ntCMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntTMatrix,ntrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntpMatrix,dtpMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntpMatrix,ltpMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntpMatrix,ngeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntpMatrix,ntrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntrMatrix,dtrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntrMatrix,ltrMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntrMatrix,ngeMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'ntrMatrix,ntpMatrix'
coerce(from, to, strict = TRUE)
## S4 method for signature 'numLike,dgeMatrix'
coerce(from, to, strict = TRUE)
See Also
Deprecated
,
base-deprecated
,
Matrix-defunct
Virtual Classes Not Yet Really Implemented and Used
Description
iMatrix
is the virtual class of all integer
(S4) matrices. It extends the Matrix
class directly.
zMatrix
is the virtual class of all complex
(S4) matrices. It extends the Matrix
class directly.
Examples
showClass("iMatrix")
showClass("zMatrix")
The Matrix (Super-) Class of a Class
Description
Return the (maybe super-)class
of class cl
from
package Matrix, returning character(0)
if there is none.
Usage
MatrixClass(cl, cld = getClassDef(cl), ...Matrix = TRUE,
dropVirtual = TRUE, ...)
Arguments
cl |
string, class name |
cld |
its class definition |
...Matrix |
|
dropVirtual |
|
... |
further arguments are passed to
|
Value
a character
string
Author(s)
Martin Maechler, 24 Mar 2009
See Also
Matrix
, the mother of all Matrix classes.
Examples
mkA <- setClass("A", contains="dgCMatrix")
(A <- mkA())
stopifnot(identical(
MatrixClass("A"),
"dgCMatrix"))
Virtual Class "MatrixFactorization" of Matrix Factorizations
Description
MatrixFactorization
is the virtual class of
factorizations of m \times n
matrices A
,
having the general form
P_{1} A P_{2} = A_{1} \cdots A_{p}
or (equivalently)
A = P_{1}' A_{1} \cdots A_{p} P_{2}'
where P_{1}
and P_{2}
are permutation matrices.
Factorizations requiring symmetric A
have the constraint
P_{2} = P_{1}'
, and factorizations without row
or column pivoting have the constraints
P_{1} = I_{m}
and P_{2} = I_{n}
,
where I_{m}
and I_{n}
are the
m \times m
and n \times n
identity matrices.
CholeskyFactorization
, BunchKaufmanFactorization
,
SchurFactorization
, LU
, and QR
are the virtual
subclasses of MatrixFactorization
containing all Cholesky,
Bunch-Kaufman, Schur, LU, and QR factorizations, respectively.
Slots
Dim
an integer vector of length 2 giving the dimensions of the factorized matrix.
Dimnames
a list of length 2 preserving the
dimnames
of the factorized matrix. Each element must beNULL
or a character vector of length equal to the corresponding element ofDim
.
Methods
determinant
signature(x = "MatrixFactorization", logarithm = "missing")
: setslogarithm = TRUE
and recalls the generic function.dim
signature(x = "MatrixFactorization")
: returnsx@Dim
.dimnames
signature(x = "MatrixFactorization")
: returnsx@Dimnames
.dimnames<-
signature(x = "MatrixFactorization", value = "NULL")
: returnsx
withx@Dimnames
set tolist(NULL, NULL)
.dimnames<-
signature(x = "MatrixFactorization", value = "list")
: returnsx
withx@Dimnames
set tovalue
.length
signature(x = "MatrixFactorization")
: returnsprod(x@Dim)
.show
signature(object = "MatrixFactorization")
: prints the internal representation of the factorization usingstr
.solve
signature(a = "MatrixFactorization", b = .)
: seesolve-methods
.unname
signature(obj = "MatrixFactorization")
: returnsobj
withobj@Dimnames
set tolist(NULL, NULL)
.
See Also
Classes extending CholeskyFactorization
, namely
Cholesky
, pCholesky
,
and CHMfactor
.
Classes extending BunchKaufmanFactorization
, namely
BunchKaufman
and pBunchKaufman
.
Classes extending SchurFactorization
, namely
Schur
.
Classes extending LU
, namely
denseLU
and sparseLU
.
Classes extending QR
, namely sparseQR
.
Generic functions Cholesky
, BunchKaufman
,
Schur
, lu
, and qr
for
computing factorizations.
Generic functions expand1
and expand2
for constructing matrix factors from MatrixFactorization
objects.
Examples
showClass("MatrixFactorization")
Virtual Class "ndenseMatrix" of Dense Logical Matrices
Description
ndenseMatrix
is the virtual class of all dense logical
(S4) matrices. It extends both denseMatrix
and lMatrix
directly.
Slots
x
:logical vector containing the entries of the matrix.
Dim
,Dimnames
:see
Matrix
.
Extends
Class "nMatrix"
, directly.
Class "denseMatrix"
, directly.
Class "Matrix"
, by class "nMatrix"
.
Class "Matrix"
, by class "denseMatrix"
.
Methods
- %*%
signature(x = "nsparseMatrix", y = "ndenseMatrix")
: ...- %*%
signature(x = "ndenseMatrix", y = "nsparseMatrix")
: ...- crossprod
signature(x = "nsparseMatrix", y = "ndenseMatrix")
: ...- crossprod
signature(x = "ndenseMatrix", y = "nsparseMatrix")
: ...- as.vector
signature(x = "ndenseMatrix", mode = "missing")
: ...- diag
signature(x = "ndenseMatrix")
: extracts the diagonal as for all matrices, see the genericdiag()
.- which
signature(x = "ndenseMatrix")
, semantically equivalent to base functionwhich(x, arr.ind)
; for details, see thelMatrix
class documentation.
See Also
Class ngeMatrix
and the other subclasses.
Examples
showClass("ndenseMatrix")
as(diag(3) > 0, "ndenseMatrix")# -> "nge"
Nearest Positive Definite Matrix
Description
Compute the nearest positive definite matrix to an approximate one, typically a correlation or variance-covariance matrix.
Usage
nearPD(x, corr = FALSE, keepDiag = FALSE, base.matrix = FALSE,
do2eigen = TRUE, doSym = FALSE,
doDykstra = TRUE, only.values = FALSE,
ensureSymmetry = !isSymmetric(x),
eig.tol = 1e-06, conv.tol = 1e-07, posd.tol = 1e-08,
maxit = 100, conv.norm.type = "I", trace = FALSE)
Arguments
x |
numeric |
corr |
logical indicating if the matrix should be a correlation matrix. |
keepDiag |
logical, generalizing |
base.matrix |
logical indicating if the resulting |
do2eigen |
logical indicating if a
|
doSym |
logical indicating if |
doDykstra |
logical indicating if Dykstra's correction should be
used; true by default. If false, the algorithm is basically the
direct fixpoint iteration
|
only.values |
logical; if |
ensureSymmetry |
logical; by default, |
eig.tol |
defines relative positiveness of eigenvalues compared
to largest one, |
conv.tol |
convergence tolerance for Higham algorithm. |
posd.tol |
tolerance for enforcing positive definiteness (in the
final |
maxit |
maximum number of iterations allowed. |
conv.norm.type |
convergence norm type ( |
trace |
logical or integer specifying if convergence monitoring should be traced. |
Details
This implements the algorithm of Higham (2002), and then (if
do2eigen
is true) forces positive definiteness using code from
posdefify
. The algorithm of Knol and ten
Berge (1989) (not implemented here) is more general in that it
allows constraints to (1) fix some rows (and columns) of the matrix and
(2) force the smallest eigenvalue to have a certain value.
Note that setting corr = TRUE
just sets diag(.) <- 1
within the algorithm.
Higham (2002) uses Dykstra's correction, but the version by Jens
Oehlschlägel did not use it (accidentally),
and still gave reasonable results; this simplification, now only
used if doDykstra = FALSE
,
was active in nearPD()
up to Matrix version 0.999375-40.
Value
If only.values = TRUE
, a numeric vector of eigenvalues of the
approximating matrix;
Otherwise, as by default, an S3 object of class
"nearPD"
, basically a list with components
mat |
a matrix of class |
eigenvalues |
numeric vector of eigenvalues of |
corr |
logical, just the argument |
normF |
the Frobenius norm ( |
iterations |
number of iterations needed. |
converged |
logical indicating if iterations converged. |
Author(s)
Jens Oehlschlägel donated a first version. Subsequent changes by the Matrix package authors.
References
Cheng, Sheung Hun and Higham, Nick (1998) A Modified Cholesky Algorithm Based on a Symmetric Indefinite Factorization; SIAM J. Matrix Anal.\ Appl., 19, 1097–1110.
Knol DL, ten Berge JMF (1989) Least-squares approximation of an improper correlation matrix by a proper one. Psychometrika 54, 53–61.
Higham, Nick (2002) Computing the nearest correlation matrix - a problem from finance; IMA Journal of Numerical Analysis 22, 329–343.
See Also
A first version of this (with non-optional corr=TRUE
)
has been available as nearcor()
; and
more simple versions with a similar purpose
posdefify()
, both from package sfsmisc.
Examples
## Higham(2002), p.334f - simple example
A <- matrix(1, 3,3); A[1,3] <- A[3,1] <- 0
n.A <- nearPD(A, corr=TRUE, do2eigen=FALSE)
n.A[c("mat", "normF")]
n.A.m <- nearPD(A, corr=TRUE, do2eigen=FALSE, base.matrix=TRUE)$mat
stopifnot(exprs = { #=--------------
all.equal(n.A$mat[1,2], 0.760689917)
all.equal(n.A$normF, 0.52779033, tolerance=1e-9)
all.equal(n.A.m, unname(as.matrix(n.A$mat)), tolerance = 1e-15)# seen rel.d.= 1.46e-16
})
set.seed(27)
m <- matrix(round(rnorm(25),2), 5, 5)
m <- m + t(m)
diag(m) <- pmax(0, diag(m)) + 1
(m <- round(cov2cor(m), 2))
str(near.m <- nearPD(m, trace = TRUE))
round(near.m$mat, 2)
norm(m - near.m$mat) # 1.102 / 1.08
if(requireNamespace("sfsmisc")) {
m2 <- sfsmisc::posdefify(m) # a simpler approach
norm(m - m2) # 1.185, i.e., slightly "less near"
}
round(nearPD(m, only.values=TRUE), 9)
## A longer example, extended from Jens' original,
## showing the effects of some of the options:
pr <- Matrix(c(1, 0.477, 0.644, 0.478, 0.651, 0.826,
0.477, 1, 0.516, 0.233, 0.682, 0.75,
0.644, 0.516, 1, 0.599, 0.581, 0.742,
0.478, 0.233, 0.599, 1, 0.741, 0.8,
0.651, 0.682, 0.581, 0.741, 1, 0.798,
0.826, 0.75, 0.742, 0.8, 0.798, 1),
nrow = 6, ncol = 6)
nc. <- nearPD(pr, conv.tol = 1e-7) # default
nc.$iterations # 2
nc.1 <- nearPD(pr, conv.tol = 1e-7, corr = TRUE)
nc.1$iterations # 11 / 12 (!)
ncr <- nearPD(pr, conv.tol = 1e-15)
str(ncr)# still 2 iterations
ncr.1 <- nearPD(pr, conv.tol = 1e-15, corr = TRUE)
ncr.1 $ iterations # 27 / 30 !
ncF <- nearPD(pr, conv.tol = 1e-15, conv.norm = "F")
stopifnot(all.equal(ncr, ncF))# norm type does not matter at all in this example
## But indeed, the 'corr = TRUE' constraint did ensure a better solution;
## cov2cor() does not just fix it up equivalently :
norm(pr - cov2cor(ncr$mat)) # = 0.09994
norm(pr - ncr.1$mat) # = 0.08746 / 0.08805
### 3) a real data example from a 'systemfit' model (3 eq.):
(load(system.file("external", "symW.rda", package="Matrix"))) # "symW"
dim(symW) # 24 x 24
class(symW)# "dsCMatrix": sparse symmetric
if(dev.interactive()) image(symW)
EV <- eigen(symW, only=TRUE)$values
summary(EV) ## looking more closely {EV sorted decreasingly}:
tail(EV)# all 6 are negative
EV2 <- eigen(sWpos <- nearPD(symW)$mat, only=TRUE)$values
stopifnot(EV2 > 0)
if(requireNamespace("sfsmisc")) {
plot(pmax(1e-3,EV), EV2, type="o", log="xy", xaxt="n", yaxt="n")
for(side in 1:2) sfsmisc::eaxis(side)
} else
plot(pmax(1e-3,EV), EV2, type="o", log="xy")
abline(0, 1, col="red3", lty=2)
Class "ngeMatrix" of General Dense Nonzero-pattern Matrices
Description
This is the class of general dense nonzero-pattern
matrices, see nMatrix
.
Slots
x
:Object of class
"logical"
. The logical values that constitute the matrix, stored in column-major order.Dim
,Dimnames
:The dimension (a length-2
"integer"
) and corresponding names (orNULL
), see theMatrix
class.factors
:Object of class
"list"
. A named list of factorizations that have been computed for the matrix.
Extends
Class "ndenseMatrix"
, directly.
Class "lMatrix"
, by class "ndenseMatrix"
.
Class "denseMatrix"
, by class "ndenseMatrix"
.
Class "Matrix"
, by class "ndenseMatrix"
.
Class "Matrix"
, by class "ndenseMatrix"
.
Methods
Currently, mainly t()
and coercion methods (for
as(.)
); use, e.g.,
showMethods(class="ngeMatrix")
for details.
See Also
Non-general logical dense matrix classes such as
ntrMatrix
, or nsyMatrix
;
sparse logical classes such as ngCMatrix
.
Examples
showClass("ngeMatrix")
## "lgeMatrix" is really more relevant
Class "nMatrix" of Non-zero Pattern Matrices
Description
The nMatrix
class is the virtual “mother” class of all
non-zero pattern (or simply pattern)
matrices in the Matrix package.
Slots
Common to all matrix object in the package:
Dim
:Object of class
"integer"
- the dimensions of the matrix - must be an integer vector with exactly two non-negative values.Dimnames
:list of length two; each component containing NULL or a
character
vector length equal the correspondingDim
element.
Methods
- coerce
signature(from = "matrix", to = "nMatrix")
: Note that these coercions (must) coerceNA
s to non-zero, hence conceptuallyTRUE
. This is particularly important whensparseMatrix
objects are coerced to"nMatrix"
and hence tonsparseMatrix
.
— — —
Additional methods contain group methods, such as
- Ops
signature(e1 = "nMatrix", e2 = "....")
, ...- Arith
signature(e1 = "nMatrix", e2 = "....")
, ...- Compare
signature(e1 = "nMatrix", e2 = "....")
, ...- Logic
signature(e1 = "nMatrix", e2 = "....")
, ...- Summary
signature(x = "nMatrix", "....")
, ...
See Also
The classes lMatrix
,
nsparseMatrix
, and the mother class,
Matrix
.
Examples
getClass("nMatrix")
L3 <- Matrix(upper.tri(diag(3)))
L3 # an "ltCMatrix"
as(L3, "nMatrix") # -> ntC*
## similar, not using Matrix()
as(upper.tri(diag(3)), "nMatrix")# currently "ngTMatrix"
The Number of Non-Zero Values of a Matrix
Description
Returns the number of non-zero values of a numeric-like R object, and
in particular an object x
inheriting from class
Matrix
.
Usage
nnzero(x, na.counted = NA)
Arguments
x |
an R object, typically inheriting from class
|
na.counted |
a
For sparse matrices, you may often want to use |
Value
the number of non zero entries in x
(typically
integer
).
Note that for a symmetric sparse matrix S
(i.e., inheriting from
class symmetricMatrix
), nnzero(S)
is
typically twice the length(S@x)
.
Methods
signature(x = "ANY")
the default method for non-
Matrix
class objects, simply counts the number0
s inx
, countingNA
's depending on thena.counted
argument, see above.signature(x = "denseMatrix")
conceptually the same as for traditional
matrix
objects, care has to be taken for"symmetricMatrix"
objects.signature(x = "diagonalMatrix")
, andsignature(x = "indMatrix")
fast simple methods for these special
"sparseMatrix"
classes.signature(x = "sparseMatrix")
typically, the most interesting method, also carefully taking
"symmetricMatrix"
objects into account.
See Also
The Matrix
class also has a
length
method; typically, length(M)
is much
larger than nnzero(M)
for a sparse matrix M, and the latter is
a better indication of the size of M
.
Examples
m <- Matrix(0+1:28, nrow = 4)
m[-3,c(2,4:5,7)] <- m[ 3, 1:4] <- m[1:3, 6] <- 0
(mT <- as(m, "TsparseMatrix"))
nnzero(mT)
(S <- crossprod(mT))
nnzero(S)
str(S) # slots are smaller than nnzero()
stopifnot(nnzero(S) == sum(as.matrix(S) != 0))# failed earlier
data(KNex, package = "Matrix")
M <- KNex$mm
class(M)
dim(M)
length(M); stopifnot(length(M) == prod(dim(M)))
nnzero(M) # more relevant than length
## the above are also visible from
str(M)
Matrix Norms
Description
Computes a matrix norm of x
, using Lapack for dense matrices.
The norm can be the one ("O"
, or "1"
) norm, the
infinity ("I"
) norm, the Frobenius ("F"
) norm,
the maximum modulus ("M"
) among elements of a matrix, or the
spectral norm or 2-norm ("2"
), as determined by the value of
type
.
Usage
norm(x, type, ...)
Arguments
x |
a real or complex matrix. |
type |
A character indicating the type of norm desired.
The default is |
... |
further arguments passed to or from other methods. |
Details
For dense matrices, the methods eventually call the Lapack functions
dlange
, dlansy
, dlantr
, zlange
,
zlansy
, and zlantr
.
Value
A numeric value of class "norm"
, representing the quantity
chosen according to type
.
References
Anderson, E., et al. (1994). LAPACK User's Guide, 2nd edition, SIAM, Philadelphia.
See Also
onenormest()
, an approximate randomized estimate
of the 1-norm condition number, efficient for large sparse matrices.
The norm()
function from R's base package.
Examples
x <- Hilbert(9)
norm(x)# = "O" = "1"
stopifnot(identical(norm(x), norm(x, "1")))
norm(x, "I")# the same, because 'x' is symmetric
allnorms <- function(x) {
## norm(NA, "2") did not work until R 4.0.0
do2 <- getRversion() >= "4.0.0" || !anyNA(x)
vapply(c("1", "I", "F", "M", if(do2) "2"), norm, 0, x = x)
}
allnorms(x)
allnorms(Hilbert(10))
i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
A <- sparseMatrix(i, j, x = x) ## 8 x 10 "dgCMatrix"
(sA <- sparseMatrix(i, j, x = x, symmetric = TRUE)) ## 10 x 10 "dsCMatrix"
(tA <- sparseMatrix(i, j, x = x, triangular= TRUE)) ## 10 x 10 "dtCMatrix"
(allnorms(A) -> nA)
allnorms(sA)
allnorms(tA)
stopifnot(all.equal(nA, allnorms(as(A, "matrix"))),
all.equal(nA, allnorms(tA))) # because tA == rbind(A, 0, 0)
A. <- A; A.[1,3] <- NA
stopifnot(is.na(allnorms(A.))) # gave error
Sparse "pattern" Matrices
Description
The nsparseMatrix
class is a virtual class of sparse
“pattern” matrices, i.e., binary matrices conceptually
with TRUE
/FALSE
entries. Only the positions of the
elements that are TRUE
are stored.
These can be stored in the “triplet” form
(TsparseMatrix
, subclasses ngTMatrix
,
nsTMatrix
, and ntTMatrix
which really contain pairs, not
triplets) or in compressed column-oriented form (class
CsparseMatrix
, subclasses ngCMatrix
,
nsCMatrix
, and ntCMatrix
) or–rarely–in
compressed row-oriented form (class RsparseMatrix
,
subclasses ngRMatrix
, nsRMatrix
, and ntRMatrix
).
The second letter in the name of these non-virtual classes indicates
g
eneral, s
ymmetric, or t
riangular.
Objects from the Class
Objects can be created by calls of the form new("ngCMatrix",
...)
and so on. More frequently objects are created by coercion of
a numeric sparse matrix to the pattern form for use in
the symbolic analysis phase
of an algorithm involving sparse matrices. Such algorithms often
involve two phases: a symbolic phase wherein the positions of the
non-zeros in the result are determined and a numeric phase wherein the
actual results are calculated. During the symbolic phase only the
positions of the non-zero elements in any operands are of interest,
hence numeric sparse matrices can be treated as sparse pattern
matrices.
Slots
uplo
:Object of class
"character"
. Must be either "U", for upper triangular, and "L", for lower triangular. Present in the triangular and symmetric classes but not in the general class.diag
:Object of class
"character"
. Must be either"U"
, for unit triangular (diagonal is all ones), or"N"
for non-unit. The implicit diagonal elements are not explicitly stored whendiag
is"U"
. Present in the triangular classes only.p
:Object of class
"integer"
of pointers, one for each column (row), to the initial (zero-based) index of elements in the column. Present in compressed column-oriented and compressed row-oriented forms only.i
:Object of class
"integer"
of length nnzero (number of non-zero elements). These are the row numbers for each TRUE element in the matrix. All other elements are FALSE. Present in triplet and compressed column-oriented forms only.j
:Object of class
"integer"
of length nnzero (number of non-zero elements). These are the column numbers for each TRUE element in the matrix. All other elements are FALSE. Present in triplet and compressed row-oriented forms only.Dim
:Object of class
"integer"
- the dimensions of the matrix.
Methods
- coerce
signature(from = "dgCMatrix", to = "ngCMatrix")
, and many similar ones; typically you should coerce to"nsparseMatrix"
(or"nMatrix"
). Note that coercion to a sparse pattern matrix records all the potential non-zero entries, i.e., explicit (“non-structural”) zeroes are coerced toTRUE
, notFALSE
, see the example.- t
signature(x = "ngCMatrix")
: returns the transpose ofx
- which
signature(x = "lsparseMatrix")
, semantically equivalent to base functionwhich(x, arr.ind)
; for details, see thelMatrix
class documentation.
See Also
the class dgCMatrix
Examples
(m <- Matrix(c(0,0,2:0), 3,5, dimnames=list(LETTERS[1:3],NULL)))
## ``extract the nonzero-pattern of (m) into an nMatrix'':
nm <- as(m, "nsparseMatrix") ## -> will be a "ngCMatrix"
str(nm) # no 'x' slot
nnm <- !nm # no longer sparse
## consistency check:
stopifnot(xor(as( nm, "matrix"),
as(nnm, "matrix")))
## low-level way of adding "non-structural zeros" :
nnm <- as(nnm, "lsparseMatrix") # "lgCMatrix"
nnm@x[2:4] <- c(FALSE, NA, NA)
nnm
as(nnm, "nMatrix") # NAs *and* non-structural 0 |---> 'TRUE'
data(KNex, package = "Matrix")
nmm <- as(KNex $ mm, "nMatrix")
str(xlx <- crossprod(nmm))# "nsCMatrix"
stopifnot(isSymmetric(xlx))
image(xlx, main=paste("crossprod(nmm) : Sparse", class(xlx)))
Symmetric Dense Nonzero-Pattern Matrices
Description
The "nsyMatrix"
class is the class of symmetric, dense nonzero-pattern
matrices in non-packed storage and "nspMatrix"
is the class of
of these in packed storage. Only the upper triangle or the
lower triangle is stored.
Objects from the Class
Objects can be created by calls of the form new("nsyMatrix", ...)
.
Slots
uplo
:Object of class
"character"
. Must be either "U", for upper triangular, and "L", for lower triangular.x
:Object of class
"logical"
. The logical values that constitute the matrix, stored in column-major order.Dim
,Dimnames
:The dimension (a length-2
"integer"
) and corresponding names (orNULL
), see theMatrix
class.factors
:Object of class
"list"
. A named list of factorizations that have been computed for the matrix.
Extends
"nsyMatrix"
extends class "ngeMatrix"
, directly, whereas
"nspMatrix"
extends class "ndenseMatrix"
, directly.
Both extend class "symmetricMatrix"
, directly,
and class "Matrix"
and others, indirectly, use
showClass("nsyMatrix")
, e.g., for details.
Methods
Currently, mainly t()
and coercion methods (for
as(.)
; use, e.g.,
showMethods(class="nsyMatrix")
for details.
See Also
Examples
(s0 <- new("nsyMatrix"))
(M2 <- Matrix(c(TRUE, NA, FALSE, FALSE), 2, 2)) # logical dense (ltr)
(sM <- M2 & t(M2)) # -> "lge"
class(sM <- as(sM, "nMatrix")) # -> "nge"
(sM <- as(sM, "symmetricMatrix")) # -> "nsy"
str(sM <- as(sM, "packedMatrix")) # -> "nsp", i.e., packed symmetric
Triangular Dense Logical Matrices
Description
The "ntrMatrix"
class is the class of triangular, dense,
logical matrices in nonpacked storage. The "ntpMatrix"
class
is the same except in packed storage.
Slots
x
:Object of class
"logical"
. The logical values that constitute the matrix, stored in column-major order.uplo
:Object of class
"character"
. Must be either "U", for upper triangular, and "L", for lower triangular.diag
:Object of class
"character"
. Must be either"U"
, for unit triangular (diagonal is all ones), or"N"
; seetriangularMatrix
.Dim
,Dimnames
:The dimension (a length-2
"integer"
) and corresponding names (orNULL
), see theMatrix
class.factors
:Object of class
"list"
. A named list of factorizations that have been computed for the matrix.
Extends
"ntrMatrix"
extends class "ngeMatrix"
, directly, whereas
"ntpMatrix"
extends class "ndenseMatrix"
, directly.
Both extend Class "triangularMatrix"
, directly,
and class "denseMatrix"
, "lMatrix"
and others,
indirectly, use showClass("nsyMatrix")
, e.g., for
details.
Methods
Currently, mainly t()
and coercion methods (for
as(.)
; use, e.g.,
showMethods(class="ntrMatrix")
for details.
See Also
Classes ngeMatrix
, Matrix
;
function t
Examples
showClass("ntrMatrix")
str(new("ntpMatrix"))
(nutr <- as(upper.tri(matrix(, 4, 4)), "ndenseMatrix"))
str(nutp <- pack(nutr)) # packed matrix: only 10 = 4*(4+1)/2 entries
!nutp # the logical negation (is *not* logical triangular !)
## but this one is:
stopifnot(all.equal(nutp, pack(!!nutp)))
Representation of Packed and Unpacked Dense Matrices
Description
pack()
coerces dense symmetric and dense triangular matrices
from unpacked format (storing the full matrix) to packed format
(storing only one of the upper and lower triangles). unpack()
performs the reverse coercion. The two formats are formalized
by the virtual classes "packedMatrix"
and
"unpackedMatrix"
.
Usage
pack(x, ...)
## S4 method for signature 'dgeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
## S4 method for signature 'lgeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
## S4 method for signature 'ngeMatrix'
pack(x, symmetric = NA, upperTri = NA, ...)
## S4 method for signature 'matrix'
pack(x, symmetric = NA, upperTri = NA, ...)
unpack(x, ...)
Arguments
x |
A dense symmetric or dense triangular matrix.
|
symmetric |
logical (including |
upperTri |
(for triangular |
... |
further arguments passed to or from other methods. |
Details
pack(x)
checks matrices x
not inheriting from
one of the virtual classes "symmetricMatrix"
"triangularMatrix"
for symmetry
(via isSymmetric()
)
then for upper and lower triangularity
(via isTriangular()
) in order to identify a suitable
coercion. Setting one or both of symmetric
and upperTri
to TRUE
or FALSE
rather than NA
allows skipping
of irrelevant tests for large matrices known to be symmetric or
(upper or lower) triangular.
Users should not assume that pack()
and unpack()
are inverse operations. Specifically, y <- unpack(pack(x))
may not reproduce an "unpackedMatrix"
x
in the sense of
identical()
. See the examples.
Value
- For
pack()
: a
"packedMatrix"
giving the condensed representation ofx
.- For
unpack()
: an
"unpackedMatrix"
giving the full storage representation ofx
.
Examples
showMethods("pack")
(s <- crossprod(matrix(sample(15), 5,3))) # traditional symmetric matrix
(sp <- pack(s))
mt <- as.matrix(tt <- tril(s))
(pt <- pack(mt))
stopifnot(identical(pt, pack(tt)),
dim(s ) == dim(sp), all(s == sp),
dim(mt) == dim(pt), all(mt == pt), all(mt == tt))
showMethods("unpack")
(cp4 <- chol(Hilbert(4))) # is triangular
tp4 <- pack(cp4) # [t]riangular [p]acked
str(tp4)
(unpack(tp4))
stopifnot(identical(tp4, pack(unpack(tp4))))
z1 <- new("dsyMatrix", Dim = c(2L, 2L), x = as.double(1:4), uplo = "U")
z2 <- unpack(pack(z1))
stopifnot(!identical(z1, z2), # _not_ identical
all(z1 == z2)) # but mathematically equal
cbind(z1@x, z2@x) # (unused!) lower triangle is "lost" in translation
Virtual Class "packedMatrix"
of Packed Dense Matrices
Description
Class "packedMatrix"
is the virtual class of dense
symmetric or triangular matrices in "packed" format, storing only
the choose(n+1,2) == n*(n+1)/2
elements of the upper or
lower triangle of an n
-by-n
matrix. It is used to
define common methods for efficient subsetting, transposing, etc.
of its proper subclasses: currently "[dln]spMatrix"
(packed symmetric), "[dln]tpMatrix"
(packed triangular),
and subclasses of these, such as
"dppMatrix"
.
Slots
uplo
:"character"
; either "U", for upper triangular, and "L", for lower.Dim
,Dimnames
:as all
Matrix
objects.
Extends
Class "denseMatrix"
, directly.
Class "Matrix"
, by class "denseMatrix"
,
distance 2.
Methods
- pack
signature(x = "packedMatrix")
: ...- unpack
signature(x = "packedMatrix")
: ...- isSymmetric
signature(object = "packedMatrix")
: ...- isTriangular
signature(object = "packedMatrix")
: ...- isDiagonal
signature(object = "packedMatrix")
: ...- t
signature(x = "packedMatrix")
: ...- diag
signature(x = "packedMatrix")
: ...- diag<-
signature(x = "packedMatrix")
: ...
Author(s)
Mikael Jagan
See Also
pack
and unpack
; its virtual "complement"
"unpackedMatrix"
; its proper subclasses
"dspMatrix"
, "ltpMatrix"
, etc.
Examples
showClass("packedMatrix")
showMethods(classes = "packedMatrix")
Permutation matrices
Description
The pMatrix
class is the class of permutation matrices,
stored as 1-based integer permutation vectors. A permutation
matrix is a square matrix whose rows and columns are all
standard unit vectors. It follows that permutation matrices are
a special case of index matrices (hence pMatrix
is defined as a direct subclass of indMatrix
).
Multiplying a matrix on the left by a permutation matrix is equivalent to permuting its rows. Analogously, multiplying a matrix on the right by a permutation matrix is equivalent to permuting its columns. Indeed, such products are implemented in Matrix as indexing operations; see ‘Details’ below.
Details
By definition, a permutation matrix is both a row index matrix
and a column index matrix. However, the perm
slot of
a pMatrix
cannot be used interchangeably as a row index
vector and column index vector. If margin=1
, then
perm
is a row index vector, and the corresponding column
index vector can be computed as invPerm(perm)
, i.e.,
by inverting the permutation. Analogously, if margin=2
,
then perm
and invPerm(perm)
are column and row
index vectors, respectively.
Given an n
-by-n
row permutation matrix P
with perm
slot p
and a matrix M
with
conformable dimensions, we have
P M | = | P %*% M | = | M[p, ] |
M P | = | M %*% P | = | M[, i(p)] |
P'M | = | crossprod(P, M) | = | M[i(p), ] |
MP' | = | tcrossprod(M, P) | = | M[, p] |
P'P | = | crossprod(P) | = | Diagonal(n) |
PP' | = | tcrossprod(P) | = | Diagonal(n)
|
where i := invPerm
.
Objects from the Class
Objects can be created explicitly with calls of the form
new("pMatrix", ...)
, but they are more commonly created
by coercing 1-based integer index vectors, with calls of the
form as(., "pMatrix")
; see ‘Methods’ below.
Slots
margin
,perm
inherited from superclass
indMatrix
. Here,perm
is an integer vector of lengthDim[1]
and a permutation of1:Dim[1]
.Dim
,Dimnames
inherited from virtual superclass
Matrix
.
Extends
Class "indMatrix"
, directly.
Methods
%*%
signature(x = "pMatrix", y = "Matrix")
and others listed byshowMethods("%*%", classes = "pMatrix")
: matrix products implemented where appropriate as indexing operations.coerce
signature(from = "numeric", to = "pMatrix")
: supporting typicalpMatrix
construction from a vector of positive integers, specifically a permutation of1:n
. Row permutation is assumed.- t
signature(x = "pMatrix")
: the transpose, which is apMatrix
with identicalperm
but oppositemargin
. Coincides with the inverse, as permutation matrices are orthogonal.- solve
signature(a = "pMatrix", b = "missing")
: the inverse permutation matrix, which is apMatrix
with identicalperm
but oppositemargin
. Coincides with the transpose, as permutation matrices are orthogonal. SeeshowMethods("solve", classes = "pMatrix")
for more signatures.- determinant
signature(x = "pMatrix", logarithm = "logical")
: always returning 1 or -1, as permutation matrices are orthogonal. In fact, the result is exactly the sign of the permutation.
See Also
Superclass indMatrix
of index matrices,
for many inherited methods; invPerm
, for computing
inverse permutation vectors.
Examples
(pm1 <- as(as.integer(c(2,3,1)), "pMatrix"))
t(pm1) # is the same as
solve(pm1)
pm1 %*% t(pm1) # check that the transpose is the inverse
stopifnot(all(diag(3) == as(pm1 %*% t(pm1), "matrix")),
is.logical(as(pm1, "matrix")))
set.seed(11)
## random permutation matrix :
(p10 <- as(sample(10),"pMatrix"))
## Permute rows / columns of a numeric matrix :
(mm <- round(array(rnorm(3 * 3), c(3, 3)), 2))
mm %*% pm1
pm1 %*% mm
try(as(as.integer(c(3,3,1)), "pMatrix"))# Error: not a permutation
as(pm1, "TsparseMatrix")
p10[1:7, 1:4] # gives an "ngTMatrix" (most economic!)
## row-indexing of a <pMatrix> keeps it as an <indMatrix>:
p10[1:3, ]
Format and Print Sparse Matrices Flexibly
Description
Format and print sparse matrices flexibly. These are the “workhorses” used by
the format
, show
and print
methods for sparse matrices. If x
is large,
printSpMatrix2(x)
calls printSpMatrix()
twice, namely,
for the first and the last few rows, suppressing those in between, and
also suppresses columns when x
is too wide.
printSpMatrix()
basically prints the result of
formatSpMatrix()
.
Usage
formatSpMatrix(x, digits = NULL, maxp = 1e9,
cld = getClassDef(class(x)), zero.print = ".",
col.names, note.dropping.colnames = TRUE, uniDiag = TRUE,
align = c("fancy", "right"), ...)
printSpMatrix(x, digits = NULL, maxp = max(100L, getOption("max.print")),
cld = getClassDef(class(x)),
zero.print = ".", col.names, note.dropping.colnames = TRUE,
uniDiag = TRUE, col.trailer = "",
align = c("fancy", "right"), ...)
printSpMatrix2(x, digits = NULL, maxp = max(100L, getOption("max.print")),
zero.print = ".", col.names, note.dropping.colnames = TRUE,
uniDiag = TRUE, suppRows = NULL, suppCols = NULL,
col.trailer = if(suppCols) "......" else "",
align = c("fancy", "right"),
width = getOption("width"), fitWidth = TRUE, ...)
Arguments
x |
an R object inheriting from class |
digits |
significant digits to use for printing, see
|
maxp |
integer, default from |
cld |
the class definition of |
zero.print |
character which should be printed for
structural zeroes. The default |
col.names |
logical or string specifying if and how column names of
|
note.dropping.colnames |
logical specifying, when
|
uniDiag |
logical indicating if the diagonal entries of a sparse
unit triangular or unit-diagonal matrix should be formatted as
|
col.trailer |
a string to be appended to the right of each
column; this is typically made use of by |
suppRows , suppCols |
logicals or |
align |
a string specifying how the |
width |
number, a positive integer, indicating the approximately
desired (line) width of the output, see also |
fitWidth |
logical indicating if some effort should be made to
match the desired |
... |
unused optional arguments. |
Details
- formatSpMatrix:
-
If
x
is large, only the first rows making up the approximately firstmaxp
entries is used, otherwise all ofx
..formatSparseSimple()
is applied to (a dense version of) the matrix. Then,formatSparseM
is used, unless in trivial cases or for sparse matrices withoutx
slot.
Value
formatSpMatrix() |
returns a character matrix with possibly empty
column names, depending on |
printSpMatrix*() |
return |
Author(s)
Martin Maechler
See Also
the virtual class sparseMatrix
and the
classes extending it; maybe sparseMatrix
or
spMatrix
as simple constructors of such matrices.
The underlying utilities formatSparseM
and
.formatSparseSimple()
(on the same page).
Examples
f1 <- gl(5, 3, labels = LETTERS[1:5])
X <- as(f1, "sparseMatrix")
X ## <==> show(X) <==> print(X)
t(X) ## shows column names, since only 5 columns
X2 <- as(gl(12, 3, labels = paste(LETTERS[1:12],"c",sep=".")),
"sparseMatrix")
X2
## less nice, but possible:
print(X2, col.names = TRUE) # use [,1] [,2] .. => does not fit
## Possibilities with column names printing:
t(X2) # suppressing column names
print(t(X2), col.names=TRUE)
print(t(X2), zero.print = "", col.names="abbr. 1")
print(t(X2), zero.print = "-", col.names="substring 2")
Methods for QR Factorization
Description
Computes the pivoted QR factorization of an m \times n
real matrix A
, which has the general form
P_{1} A P_{2} = Q R
or (equivalently)
A = P_{1}' Q R P_{2}'
where
P_{1}
and P_{2}
are permutation matrices,
Q = \prod_{j = 1}^{n} H_{j}
is an m \times m
orthogonal matrix
equal to the product of n
Householder matrices H_{j}
, and
R
is an m \times n
upper trapezoidal matrix.
denseMatrix
use the default method implemented
in base, namely qr.default
. It is built on
LINPACK routine dqrdc
and LAPACK routine dgeqp3
, which
do not pivot rows, so that P_{1}
is an identity matrix.
Methods for sparseMatrix
are built on
CXSparse routines cs_sqr
and cs_qr
, which require
m \ge n
.
Usage
qr(x, ...)
## S4 method for signature 'dgCMatrix'
qr(x, order = 3L, ...)
Arguments
x |
a finite matrix or
|
order |
an integer in |
... |
further arguments passed to or from methods. |
Details
If x
is sparse and structurally rank deficient, having
structural rank r < n
, then x
is augmented with
(n-r)
rows of (partly non-structural) zeros, such that
the augmented matrix has structural rank n
.
This augmented matrix is factorized as described above:
P_1 A P_2 = P_1 \begin{bmatrix} A_{0} \\ 0 \end{bmatrix} P_2 = Q R
where A_0
denotes the original, user-supplied
(m-(n-r)) \times n
matrix.
Value
An object representing the factorization, inheriting from
virtual S4 class QR
or S3 class
qr
. The specific class is qr
unless x
inherits from virtual class
sparseMatrix
, in which case it is
sparseQR
.
References
Davis, T. A. (2006). Direct methods for sparse linear systems. Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898718881
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
Class sparseQR
and its methods.
Class dgCMatrix
.
Generic function qr
from base,
whose default method qr.default
“defines”
the S3 class qr
of dense QR factorizations.
Generic functions expand1
and expand2
,
for constructing matrix factors from the result.
Generic functions Cholesky
, BunchKaufman
,
Schur
, and lu
,
for computing other factorizations.
Examples
showMethods("qr", inherited = FALSE)
## Rank deficient: columns 3 {b2} and 6 {c3} are "extra"
M <- as(cbind(a1 = 1,
b1 = rep(c(1, 0), each = 3L),
b2 = rep(c(0, 1), each = 3L),
c1 = rep(c(1, 0, 0), 2L),
c2 = rep(c(0, 1, 0), 2L),
c3 = rep(c(0, 0, 1), 2L)),
"CsparseMatrix")
rownames(M) <- paste0("r", seq_len(nrow(M)))
b <- 1:6
eps <- .Machine$double.eps
## .... [1] full rank ..................................................
## ===> a least squares solution of A x = b exists
## and is unique _in exact arithmetic_
(A1 <- M[, -c(3L, 6L)])
(qr.A1 <- qr(A1))
stopifnot(exprs = {
rankMatrix(A1) == ncol(A1)
{ d1 <- abs(diag(qr.A1@R)); sum(d1 < max(d1) * eps) == 0L }
rcond(crossprod(A1)) >= eps
all.equal(qr.coef(qr.A1, b), drop(solve(crossprod(A1), crossprod(A1, b))))
all.equal(qr.fitted(qr.A1, b) + qr.resid(qr.A1, b), b)
})
## .... [2] numerically rank deficient with full structural rank .......
## ===> a least squares solution of A x = b does not
## exist or is not unique _in exact arithmetic_
(A2 <- M)
(qr.A2 <- qr(A2))
stopifnot(exprs = {
rankMatrix(A2) == ncol(A2) - 2L
{ d2 <- abs(diag(qr.A2@R)); sum(d2 < max(d2) * eps) == 2L }
rcond(crossprod(A2)) < eps
## 'qr.coef' computes unique least squares solution of "nearby" problem
## Z x = b for some full rank Z ~ A, currently without warning {FIXME} !
tryCatch({ qr.coef(qr.A2, b); TRUE }, condition = function(x) FALSE)
all.equal(qr.fitted(qr.A2, b) + qr.resid(qr.A2, b), b)
})
## .... [3] numerically and structurally rank deficient ................
## ===> factorization of _augmented_ matrix with
## full structural rank proceeds as in [2]
## NB: implementation details are subject to change; see (*) below
A3 <- M
A3[, c(3L, 6L)] <- 0
A3
(qr.A3 <- qr(A3)) # with a warning ... "additional 2 row(s) of zeros"
stopifnot(exprs = {
## sparseQR object preserves the unaugmented dimensions (*)
dim(qr.A3 ) == dim(A3)
dim(qr.A3@V) == dim(A3) + c(2L, 0L)
dim(qr.A3@R) == dim(A3) + c(2L, 0L)
## The augmented matrix remains numerically rank deficient
rankMatrix(A3) == ncol(A3) - 2L
{ d3 <- abs(diag(qr.A3@R)); sum(d3 < max(d3) * eps) == 2L }
rcond(crossprod(A3)) < eps
})
## Auxiliary functions accept and return a vector or matrix
## with dimensions corresponding to the unaugmented matrix (*),
## in all cases with a warning
qr.coef (qr.A3, b)
qr.fitted(qr.A3, b)
qr.resid (qr.A3, b)
## .... [4] yet more examples ..........................................
## By disabling column pivoting, one gets the "vanilla" factorization
## A = Q~ R, where Q~ := P1' Q is orthogonal because P1 and Q are
(qr.A1.pp <- qr(A1, order = 0L)) # partial pivoting
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)
stopifnot(exprs = {
length(qr.A1 @q) == ncol(A1)
length(qr.A1.pp@q) == 0L # indicating no column pivoting
ae2(A1[, qr.A1@q + 1L], qr.Q(qr.A1 ) %*% qr.R(qr.A1 ))
ae2(A1 , qr.Q(qr.A1.pp) %*% qr.R(qr.A1.pp))
})
Rank of a Matrix
Description
Compute ‘the’ matrix rank, a well-defined functional in theory(*), somewhat ambiguous in practice. We provide several methods, the default corresponding to Matlab's definition.
(*) The rank of a n \times m
matrix A
, rk(A)
,
is the maximal number of linearly independent columns (or rows); hence
rk(A) \le min(n,m)
.
Usage
rankMatrix(x, tol = NULL,
method = c("tolNorm2", "qr.R", "qrLINPACK", "qr",
"useGrad", "maybeGrad"),
sval = svd(x, 0, 0)$d, warn.t = TRUE, warn.qr = TRUE)
qr2rankMatrix(qr, tol = NULL, isBqr = is.qr(qr), do.warn = TRUE)
Arguments
x |
numeric matrix, of dimension |
tol |
nonnegative number specifying a (relative,
“scalefree”) tolerance for testing of
“practically zero” with specific meaning depending on
|
method |
a character string specifying the computational method for the rank, can be abbreviated:
|
sval |
numeric vector of non-increasing singular values of
|
warn.t |
logical indicating if |
warn.qr |
in the |
qr |
an R object resulting from |
isBqr |
|
do.warn |
logical; if true, warn about non-finite diagonal
entries in the |
Details
qr2rankMatrix()
is typically called from rankMatrix()
for
the "qr"
* method
s, but can be used directly - much more
efficiently in case the qr
-decomposition is available anyway.
Value
If x
is a matrix of all 0
(or of zero dimension), the rank
is zero; otherwise, typically a positive integer in 1:min(dim(x))
with attributes detailing the method used.
There are rare cases where the sparse QR
decomposition
“fails” in so far as the diagonal entries of R
, the
d_i
(see above), end with non-finite, typically NaN
entries. Then, a warning is signalled (unless warn.qr
/
do.warn
is not true) and NA
(specifically,
NA_integer_
) is returned.
Note
For large sparse matrices x
, unless you can specify
sval
yourself, currently method = "qr"
may
be the only feasible one, as the others need sval
and call
svd()
which currently coerces x
to a
denseMatrix
which may be very slow or impossible,
depending on the matrix dimensions.
Note that in the case of sparse x
, method = "qr"
, all
non-strictly zero diagonal entries d_i
where counted, up to
including Matrix version 1.1-0, i.e., that method implicitly
used tol = 0
, see also the set.seed(42)
example below.
Author(s)
Martin Maechler; for the "*Grad" methods building on suggestions by Ravi Varadhan.
See Also
Examples
rankMatrix(cbind(1, 0, 1:3)) # 2
(meths <- eval(formals(rankMatrix)$method))
## a "border" case:
H12 <- Hilbert(12)
rankMatrix(H12, tol = 1e-20) # 12; but 11 with default method & tol.
sapply(meths, function(.m.) rankMatrix(H12, method = .m.))
## tolNorm2 qr.R qrLINPACK qr useGrad maybeGrad
## 11 11 12 12 11 11
## The meaning of 'tol' for method="qrLINPACK" and *dense* x is not entirely "scale free"
rMQL <- function(ex, M) rankMatrix(M, method="qrLINPACK",tol = 10^-ex)
rMQR <- function(ex, M) rankMatrix(M, method="qr.R", tol = 10^-ex)
sapply(5:15, rMQL, M = H12) # result is platform dependent
## 7 7 8 10 10 11 11 11 12 12 12 {x86_64}
sapply(5:15, rMQL, M = 1000 * H12) # not identical unfortunately
## 7 7 8 10 11 11 12 12 12 12 12
sapply(5:15, rMQR, M = H12)
## 5 6 7 8 8 9 9 10 10 11 11
sapply(5:15, rMQR, M = 1000 * H12) # the *same*
## "sparse" case:
M15 <- kronecker(diag(x=c(100,1,10)), Hilbert(5))
sapply(meths, function(.m.) rankMatrix(M15, method = .m.))
#--> all 15, but 'useGrad' has 14.
sapply(meths, function(.m.) rankMatrix(M15, method = .m., tol = 1e-7)) # all 14
## "large" sparse
n <- 250000; p <- 33; nnz <- 10000
L <- sparseMatrix(i = sample.int(n, nnz, replace=TRUE),
j = sample.int(p, nnz, replace=TRUE),
x = rnorm(nnz))
(st1 <- system.time(r1 <- rankMatrix(L))) # warning+ ~1.5 sec (2013)
(st2 <- system.time(r2 <- rankMatrix(L, method = "qr"))) # considerably faster!
r1[[1]] == print(r2[[1]]) ## --> ( 33 TRUE )
## another sparse-"qr" one, which ``failed'' till 2013-11-23:
set.seed(42)
f1 <- factor(sample(50, 1000, replace=TRUE))
f2 <- factor(sample(50, 1000, replace=TRUE))
f3 <- factor(sample(50, 1000, replace=TRUE))
D <- t(do.call(rbind, lapply(list(f1,f2,f3), as, 'sparseMatrix')))
dim(D); nnzero(D) ## 1000 x 150 // 3000 non-zeros (= 2%)
stopifnot(rankMatrix(D, method='qr') == 148,
rankMatrix(crossprod(D),method='qr') == 148)
## zero matrix has rank 0 :
stopifnot(sapply(meths, function(.m.)
rankMatrix(matrix(0, 2, 2), method = .m.)) == 0)
Estimate the Reciprocal Condition Number
Description
Estimate the reciprocal of the condition number of a matrix.
This is a generic function with several methods, as seen by
showMethods(rcond)
.
Usage
rcond(x, norm, ...)
## S4 method for signature 'sparseMatrix,character'
rcond(x, norm, useInv=FALSE, ...)
Arguments
x |
an R object that inherits from the |
norm |
character string indicating the type of norm to be used in
the estimate. The default is |
useInv |
logical (or This may be an efficient alternative (only) in situations where
Note that the result may differ depending on |
... |
further arguments passed to or from other methods. |
Value
An estimate of the reciprocal condition number of x
.
BACKGROUND
The condition number of a regular (square) matrix is the product of
the norm
of the matrix and the norm of its inverse (or
pseudo-inverse).
More generally, the condition number is defined (also for
non-square matrices A
) as
\kappa(A) = \frac{\max_{\|v\| = 1} \|A v\|}{\min_{\|v\| = 1} \|A v\|}.
Whenever x
is not a square matrix, in our method
definitions, this is typically computed via rcond(qr.R(qr(X)), ...)
where X
is x
or t(x)
.
The condition number takes on values between 1 and infinity, inclusive, and can be viewed as a factor by which errors in solving linear systems with this matrix as coefficient matrix could be magnified.
rcond()
computes the reciprocal condition number
1/\kappa
with values in [0,1]
and can be viewed as a
scaled measure of how close a matrix is to being rank deficient (aka
“singular”).
Condition numbers are usually estimated, since exact computation is costly in terms of floating-point operations. An (over) estimate of reciprocal condition number is given, since by doing so overflow is avoided. Matrices are well-conditioned if the reciprocal condition number is near 1 and ill-conditioned if it is near zero.
References
Golub, G., and Van Loan, C. F. (1989). Matrix Computations, 2nd edition, Johns Hopkins, Baltimore.
See Also
norm
, kappa()
from package
base computes an approximate condition number of a
“traditional” matrix, even non-square ones, with respect to the
p=2
(Euclidean) norm
.
solve
.
condest
, a newer approximate estimate of
the (1-norm) condition number, particularly efficient for large sparse
matrices.
Examples
x <- Matrix(rnorm(9), 3, 3)
rcond(x)
## typically "the same" (with more computational effort):
1 / (norm(x) * norm(solve(x)))
rcond(Hilbert(9)) # should be about 9.1e-13
## For non-square matrices:
rcond(x1 <- cbind(1,1:10))# 0.05278
rcond(x2 <- cbind(x1, 2:11))# practically 0, since x2 does not have full rank
## sparse
(S1 <- Matrix(rbind(0:1,0, diag(3:-2))))
rcond(S1)
m1 <- as(S1, "denseMatrix")
all.equal(rcond(S1), rcond(m1))
## wide and sparse
rcond(Matrix(cbind(0, diag(2:-1))))
## Large sparse example ----------
m <- Matrix(c(3,0:2), 2,2)
M <- bdiag(kronecker(Diagonal(2), m), kronecker(m,m))
36*(iM <- solve(M)) # still sparse
MM <- kronecker(Diagonal(10), kronecker(Diagonal(5),kronecker(m,M)))
dim(M3 <- kronecker(bdiag(M,M),MM)) # 12'800 ^ 2
if(interactive()) ## takes about 2 seconds if you have >= 8 GB RAM
system.time(r <- rcond(M3))
## whereas this is *fast* even though it computes solve(M3)
system.time(r. <- rcond(M3, useInv=TRUE))
if(interactive()) ## the values are not the same
c(r, r.) # 0.05555 0.013888
## for all 4 norms available for sparseMatrix :
cbind(rr <- sapply(c("1","I","F","M"),
function(N) rcond(M3, norm=N, useInv=TRUE)))
Replicate Vectors into 'abIndex' Result
Description
rep2abI(x, times)
conceptually computes
rep.int(x, times)
but with an
abIndex
class result.
Usage
rep2abI(x, times)
Arguments
x |
numeric vector |
times |
integer (valued) scalar: the number of repetitions |
Value
See Also
rep.int()
, the base function;
abIseq
, abIndex
.
Examples
(ab <- rep2abI(2:7, 4))
stopifnot(identical(as(ab, "numeric"),
rep(2:7, 4)))
Class "rleDiff" of rle(diff(.)) Stored Vectors
Description
Class "rleDiff"
is for compactly storing long vectors
which mainly consist of linear stretches. For such a vector
x
, diff(x)
consists of constant stretches
and is hence well compressable via rle()
.
Objects from the Class
Objects can be created by calls of the form new("rleDiff", ...)
.
Currently experimental, see below.
Slots
first
:A single number (of class
"numLike"
, a class union of"numeric"
and"logical"
).rle
:Object of class
"rle"
, basically alist
with components"lengths"
and"values"
, seerle()
. As this is used to encode potentially huge index vectors,lengths
may be of typedouble
here.
Methods
There is a simple show
method only.
Note
This is currently an experimental auxiliary class
for the class abIndex
, see there.
See Also
Examples
showClass("rleDiff")
ab <- c(abIseq(2, 100), abIseq(20, -2))
ab@rleD # is "rleDiff"
Random Sparse Matrix
Description
Generate a random sparse matrix efficiently. The default has rounded
gaussian non-zero entries, and rand.x = NULL
generates random
pattern matrices, i.e. inheriting from nsparseMatrix
.
Usage
rsparsematrix(nrow, ncol, density, nnz = round(density * maxE),
symmetric = FALSE,
rand.x = function(n) signif(rnorm(n), 2), ...)
Arguments
nrow , ncol |
number of rows and columns, i.e., the matrix
dimension ( |
density |
optional number in |
nnz |
number of non-zero entries, for a sparse matrix typically
considerably smaller than |
symmetric |
logical indicating if result should be a matrix of
class |
rand.x |
|
... |
optionally further arguments passed to
|
Details
The algorithm first samples “encoded” (i,j)
s without
replacement, via one dimensional indices, if not symmetric
sample.int(nrow*ncol, nnz)
, then—if rand.x
is
not NULL
—gets x <- rand.x(nnz)
and calls
sparseMatrix(i=i, j=j, x=x, ..)
. When
rand.x=NULL
, sparseMatrix(i=i, j=j, ..)
will
return a pattern matrix (i.e., inheriting from
nsparseMatrix
).
Value
a sparseMatrix
, say M
of dimension (nrow,
ncol), i.e., with dim(M) == c(nrow, ncol)
, if symmetric
is not true, with nzM <- nnzero(M)
fulfilling
nzM <= nnz
and typically, nzM == nnz
.
Author(s)
Martin Maechler
Examples
set.seed(17)# to be reproducible
M <- rsparsematrix(8, 12, nnz = 30) # small example, not very sparse
M
M1 <- rsparsematrix(1000, 20, nnz = 123, rand.x = runif)
summary(M1)
## a random *symmetric* Matrix
(S9 <- rsparsematrix(9, 9, nnz = 10, symmetric=TRUE)) # dsCMatrix
nnzero(S9)# ~ 20: as 'nnz' only counts one "triangle"
## a random patter*n* aka boolean Matrix (no 'x' slot):
(n7 <- rsparsematrix(5, 12, nnz = 10, rand.x = NULL))
## a [T]riplet representation sparseMatrix:
T2 <- rsparsematrix(40, 12, nnz = 99, repr = "T")
head(T2)
Class "RsparseMatrix" of Sparse Matrices in Row-compressed Form
Description
The "RsparseMatrix"
class is the virtual class of
all sparse matrices coded in sorted compressed row-oriented form.
Since it is a virtual class, no objects may be created from it. See
showClass("RsparseMatrix")
for its subclasses.
Slots
j
:Object of class
"integer"
of lengthnnzero
(number of non-zero elements). These are the row numbers for each non-zero element in the matrix.p
:Object of class
"integer"
of pointers, one for each row, to the initial (zero-based) index of elements in the row.Dim
,Dimnames
:inherited from the superclass, see
sparseMatrix
.
Extends
Class "sparseMatrix"
, directly.
Class "Matrix"
, by class "sparseMatrix"
.
Methods
Originally, few methods were defined on purpose, as we
rather use the CsparseMatrix
in Matrix.
Then, more methods were added but beware that these
typically do not return "RsparseMatrix"
results, but
rather Csparse* or Tsparse* ones; e.g., R[i, j] <- v
for an
"RsparseMatrix"
R
works, but after the assignment, R
is a (triplet) "TsparseMatrix"
.
- t
signature(x = "RsparseMatrix")
: ...- coerce
signature(from = "RsparseMatrix", to = "CsparseMatrix")
: ...- coerce
signature(from = "RsparseMatrix", to = "TsparseMatrix")
: ...
See Also
its superclass, sparseMatrix
, and, e.g., class
dgRMatrix
for the links to other classes.
Examples
showClass("RsparseMatrix")
Schur Factorizations
Description
Schur
is the class of Schur factorizations of
n \times n
real matrices A
,
having the general form
A = Q T Q'
where
Q
is an orthogonal matrix and
T
is a block upper triangular matrix with
1 \times 1
or 2 \times 2
diagonal blocks
specifying the real and complex conjugate eigenvalues of A
.
The column vectors of Q
are the Schur vectors of A
,
and T
is the Schur form of A
.
The Schur factorization generalizes the spectral decomposition
of normal matrices A
, whose Schur form is block diagonal,
to arbitrary square matrices.
Details
The matrix A
and its Schur form T
are similar
and thus have the same spectrum. The eigenvalues are computed
trivially as the eigenvalues of the diagonal blocks of T
.
Slots
Dim
,Dimnames
inherited from virtual class
MatrixFactorization
.Q
an orthogonal matrix, inheriting from virtual class
Matrix
.T
a block upper triangular matrix, inheriting from virtual class
Matrix
. The diagonal blocks have dimensions 1-by-1 or 2-by-2.EValues
a numeric or complex vector containing the eigenvalues of the diagonal blocks of
T
, which are the eigenvalues ofT
and consequently of the factorized matrix.
Extends
Class SchurFactorization
, directly.
Class MatrixFactorization
, by class
SchurFactorization
, distance 2.
Instantiation
Objects can be generated directly by calls of the form
new("Schur", ...)
, but they are more typically obtained
as the value of Schur(x)
for x
inheriting from
Matrix
(often dgeMatrix
).
Methods
determinant
signature(from = "Schur", logarithm = "logical")
: computes the determinant of the factorized matrixA
or its logarithm.expand1
signature(x = "Schur")
: seeexpand1-methods
.expand2
signature(x = "Schur")
: seeexpand2-methods
.solve
signature(a = "Schur", b = .)
: seesolve-methods
.
References
The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dgees.f.
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
Class dgeMatrix
.
Generic functions Schur
,
expand1
and expand2
.
Examples
showClass("Schur")
set.seed(0)
n <- 4L
(A <- Matrix(rnorm(n * n), n, n))
## With dimnames, to see that they are propagated :
dimnames(A) <- list(paste0("r", seq_len(n)),
paste0("c", seq_len(n)))
(sch.A <- Schur(A))
str(e.sch.A <- expand2(sch.A), max.level = 2L)
## A ~ Q T Q' in floating point
stopifnot(exprs = {
identical(names(e.sch.A), c("Q", "T", "Q."))
all.equal(A, with(e.sch.A, Q %*% T %*% Q.))
})
## Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(all.equal(det(A), det(sch.A)),
all.equal(solve(A, b), solve(sch.A, b)))
## One of the non-general cases:
Schur(Diagonal(6L))
Methods for Schur Factorization
Description
Computes the Schur factorization of an n \times n
real matrix A
, which has the general form
A = Q T Q'
where
Q
is an orthogonal matrix and
T
is a block upper triangular matrix with
1 \times 1
and 2 \times 2
diagonal blocks
specifying the real and complex conjugate eigenvalues of A
.
The column vectors of Q
are the Schur vectors of A
,
and T
is the Schur form of A
.
Methods are built on LAPACK routine dgees
.
Usage
Schur(x, vectors = TRUE, ...)
Arguments
x |
|
vectors |
a logical. If |
... |
further arguments passed to or from methods. |
Value
An object representing the factorization, inheriting
from virtual class SchurFactorization
if vectors = TRUE
. Currently, the specific class
is always Schur
in that case.
An exception is if x
is a traditional matrix,
in which case the result is a named list containing
Q
, T
, and EValues
slots of the
Schur
object.
If vectors = FALSE
, then the result is the same
named list but without Q
.
References
The LAPACK source code, including documentation; see https://netlib.org/lapack/double/dgees.f.
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
Class Schur
and its methods.
Class dgeMatrix
.
Generic functions expand1
and expand2
,
for constructing matrix factors from the result.
Generic functions Cholesky
, BunchKaufman
,
lu
, and qr
,
for computing other factorizations.
Examples
showMethods("Schur", inherited = FALSE)
set.seed(0)
Schur(Hilbert(9L)) # real eigenvalues
(A <- Matrix(round(rnorm(25L, sd = 100)), 5L, 5L))
(sch.A <- Schur(A)) # complex eigenvalues
## A ~ Q T Q' in floating point
str(e.sch.A <- expand2(sch.A), max.level = 2L)
stopifnot(all.equal(A, Reduce(`%*%`, e.sch.A)))
(e1 <- eigen(sch.A@T, only.values = TRUE)$values)
(e2 <- eigen( A , only.values = TRUE)$values)
(e3 <- sch.A@EValues)
stopifnot(exprs = {
all.equal(e1, e2, tolerance = 1e-13)
all.equal(e1, e3[order(Mod(e3), decreasing = TRUE)], tolerance = 1e-13)
identical(Schur(A, vectors = FALSE),
list(T = sch.A@T, EValues = e3))
identical(Schur(as(A, "matrix")),
list(Q = as(sch.A@Q, "matrix"),
T = as(sch.A@T, "matrix"), EValues = e3))
})
Methods in Package Matrix for Function solve
Description
Methods for generic function solve
for solving
linear systems of equations,
i.e., for X
in A X = B
,
where A
is a square matrix and X
and B
are matrices
with dimensions consistent with A
.
Usage
solve(a, b, ...)
## S4 method for signature 'dgeMatrix,ANY'
solve(a, b, tol = .Machine$double.eps, ...)
## S4 method for signature 'dgCMatrix,missing'
solve(a, b, sparse = TRUE, ...)
## S4 method for signature 'dgCMatrix,matrix'
solve(a, b, sparse = FALSE, ...)
## S4 method for signature 'dgCMatrix,denseMatrix'
solve(a, b, sparse = FALSE, ...)
## S4 method for signature 'dgCMatrix,sparseMatrix'
solve(a, b, sparse = TRUE, ...)
## S4 method for signature 'denseLU,dgeMatrix'
solve(a, b, ...)
## S4 method for signature 'BunchKaufman,dgeMatrix'
solve(a, b, ...)
## S4 method for signature 'Cholesky,dgeMatrix'
solve(a, b, ...)
## S4 method for signature 'sparseLU,dgCMatrix'
solve(a, b, tol = .Machine$double.eps, ...)
## S4 method for signature 'sparseQR,dgCMatrix'
solve(a, b, ...)
## S4 method for signature 'CHMfactor,dgCMatrix'
solve(a, b, system = c("A", "LDLt", "LD", "DLt", "L", "Lt", "D", "P", "Pt"), ...)
Arguments
a |
a finite square matrix or
|
b |
a vector, |
tol |
a non-negative number. For |
sparse |
a logical indicating if the result should be formally
sparse, i.e., if the result should inherit from virtual class
|
system |
a string specifying a linear system to be solved.
Only methods for |
... |
further arguments passed to or from methods. |
Details
Methods for general and symmetric matrices a
compute a
triangular factorization (LU, Bunch-Kaufman, or Cholesky)
and call the method for the corresponding factorization class.
The factorization is sparse if a
is. Methods for sparse,
symmetric matrices a
attempt a Cholesky factorization
and perform an LU factorization only if that fails (typically
because a
is not positive definite).
Triangular, diagonal, and permutation matrices do not require
factorization (they are already “factors”), hence methods
for those are implemented directly. For triangular a
,
solutions are obtained by forward or backward substitution;
for diagonal a
, they are obtained by scaling the rows
of b
; and for permutations a
, they are obtained
by permuting the rows of b
.
Methods for dense a
are built on 14 LAPACK routines:
class d..Matrix
, where ..=(ge|tr|tp|sy|sp|po|pp)
,
uses routines d..tri
and d..trs
for missing
and non-missing b
, respectively. A corollary is that
these methods always give a dense result.
Methods for sparse a
are built on CXSparse routines
cs_lsolve
, cs_usolve
, and cs_spsolve
and
CHOLMOD routines cholmod_solve
and cholmod_spsolve
.
By default, these methods give a vector result if b
is a vector, a sparse matrix result if b
is missing
or a sparse matrix, and a dense matrix result if b
is a dense matrix. One can override this behaviour by setting
the sparse
argument, where available, but that should
be done with care. Note that a sparse result may be sparse only
in the formal sense and not at all in the mathematical sense,
depending on the nonzero patterns of a
and b
.
Furthermore, whereas dense results are fully preallocated,
sparse results must be “grown” in a loop over the columns
of b
.
Methods for a
of class sparseQR
are simple wrappers around qr.coef
, giving the
least squares solution in overdetermined cases.
Methods for a
inheriting from CHMfactor
can solve systems other than the default one A X = B
.
The correspondence between its system
argument the system
actually solved is outlined in the table below.
See CHMfactor-class
for a definition of notation.
system | isLDL(a)=TRUE | isLDL(a)=FALSE |
"A" | A X = B | A X = B |
"LDLt" | L_{1} D L_{1}' X = B | L L' X = B |
"LD" | L_{1} D X = B | L X = B |
"DLt" | D L_{1}' X = B | L' X = B |
"L" | L_{1} X = B | L X = B |
"Lt" | L_{1}' X = B | L' X = B |
"D" | D X = B | X = B |
"P" | X = P_{1} B | X = P_{1} B |
"Pt" | X = P_{1}' B | X = P_{1}' B
|
See Also
Virtual class MatrixFactorization
and its
subclasses.
Generic functions Cholesky
, BunchKaufman
,
Schur
, lu
, and qr
for
computing factorizations.
Generic function solve
from base.
Function qr.coef
from base for computing
least squares solutions of overdetermined linear systems.
Examples
## A close to symmetric example with "quite sparse" inverse:
n1 <- 7; n2 <- 3
dd <- data.frame(a = gl(n1,n2), b = gl(n2,1,n1*n2))# balanced 2-way
X <- sparse.model.matrix(~ -1+ a + b, dd)# no intercept --> even sparser
XXt <- tcrossprod(X)
diag(XXt) <- rep(c(0,0,1,0), length.out = nrow(XXt))
n <- nrow(ZZ <- kronecker(XXt, Diagonal(x=c(4,1))))
image(a <- 2*Diagonal(n) + ZZ %*% Diagonal(x=c(10, rep(1, n-1))))
isSymmetric(a) # FALSE
image(drop0(skewpart(a)))
image(ia0 <- solve(a, tol = 0)) # checker board, dense [but really, a is singular!]
try(solve(a, sparse=TRUE))##-> error [ TODO: assertError ]
ia. <- solve(a, sparse=TRUE, tol = 1e-19)##-> *no* error
if(R.version$arch == "x86_64")
## Fails on 32-bit [Fedora 19, R 3.0.2] from Matrix 1.1-0 on [FIXME ??] only
stopifnot(all.equal(as.matrix(ia.), as.matrix(ia0)))
a <- a + Diagonal(n)
iad <- solve(a)
ias <- solve(a, sparse=FALSE)
stopifnot(all.equal(as(iad,"denseMatrix"), ias, tolerance=1e-14))
I. <- iad %*% a ; image(I.)
I0 <- drop0(zapsmall(I.)); image(I0)
.I <- a %*% iad
.I0 <- drop0(zapsmall(.I))
stopifnot( all.equal(as(I0, "diagonalMatrix"), Diagonal(n)),
all.equal(as(.I0,"diagonalMatrix"), Diagonal(n)) )
Construct Sparse Design / Model Matrices
Description
Construct a sparse model or “design” matrix,
from a formula and data frame (sparse.model.matrix
) or a single
factor (fac2sparse
).
The fac2[Ss]parse()
functions are utilities, also used
internally in the principal user level function
sparse.model.matrix()
.
Usage
sparse.model.matrix(object, data = environment(object),
contrasts.arg = NULL, xlev = NULL, transpose = FALSE,
drop.unused.levels = FALSE, row.names = TRUE,
sep = "", verbose = FALSE, ...)
fac2sparse(from, to = c("d", "l", "n"),
drop.unused.levels = TRUE, repr = c("C", "R", "T"), giveCsparse)
fac2Sparse(from, to = c("d", "l", "n"),
drop.unused.levels = TRUE, repr = c("C", "R", "T"), giveCsparse,
factorPatt12, contrasts.arg = NULL)
Arguments
object |
an object of an appropriate class. For the default method, a model formula or terms object. |
data |
a data frame created with |
contrasts.arg |
|
xlev |
to be used as argument of |
transpose |
logical indicating if the transpose should be
returned; if the transposed is used anyway, setting |
drop.unused.levels |
should factors have unused levels dropped?
The default for |
row.names |
logical indicating if row names should be used. |
sep |
|
verbose |
logical or integer indicating if (and how much) progress output should be printed. |
... |
further arguments passed to or from other methods. |
from |
(for |
to |
a character indicating the “kind” of sparse matrix to
be returned. The default, |
giveCsparse |
deprecated, replaced with |
repr |
|
factorPatt12 |
logical vector, say |
Value
a sparse matrix, extending CsparseMatrix
(for
fac2sparse()
if repr = "C"
as per default; a
TsparseMatrix
or RsparseMatrix
, otherwise).
For fac2Sparse()
, a list
of length two, both
components with the corresponding transposed model matrix, where the
corresponding factorPatt12
is true.
fac2sparse()
, the basic workhorse of
sparse.model.matrix()
, returns the transpose
(t
) of the model matrix.
Note
model.Matrix(sparse = TRUE)
from package MatrixModels
may be nowadays be preferable to sparse.model.matrix
,
as model.Matrix
returns an object of class modelMatrix
with additional slots assign
and contrasts
relating to
the model variables.
Author(s)
Doug Bates and Martin Maechler, with initial suggestions from Tim Hesterberg.
See Also
model.matrix
in package stats, part of base R.
model.Matrix
in package MatrixModels; see ‘Note’.
as(f, "sparseMatrix")
(see coerce(from = "factor", ..)
in the class doc sparseMatrix) produces the
transposed sparse model matrix for a single factor f
(and no contrasts).
Examples
dd <- data.frame(a = gl(3,4), b = gl(4,1,12))# balanced 2-way
options("contrasts") # the default: "contr.treatment"
sparse.model.matrix(~ a + b, dd)
sparse.model.matrix(~ -1+ a + b, dd)# no intercept --> even sparser
sparse.model.matrix(~ a + b, dd, contrasts = list(a="contr.sum"))
sparse.model.matrix(~ a + b, dd, contrasts = list(b="contr.SAS"))
## Sparse method is equivalent to the traditional one :
stopifnot(all(sparse.model.matrix(~ a + b, dd) ==
Matrix(model.matrix(~ a + b, dd), sparse=TRUE)),
all(sparse.model.matrix(~0 + a + b, dd) ==
Matrix(model.matrix(~0 + a + b, dd), sparse=TRUE)))
(ff <- gl(3,4,, c("X","Y", "Z")))
fac2sparse(ff) # 3 x 12 sparse Matrix of class "dgCMatrix"
##
## X 1 1 1 1 . . . . . . . .
## Y . . . . 1 1 1 1 . . . .
## Z . . . . . . . . 1 1 1 1
## can also be computed via sparse.model.matrix():
f30 <- gl(3,0 )
f12 <- gl(3,0, 12)
stopifnot(
all.equal(t( fac2sparse(ff) ),
sparse.model.matrix(~ 0+ff),
tolerance = 0, check.attributes=FALSE),
is(M <- fac2sparse(f30, drop= TRUE),"CsparseMatrix"), dim(M) == c(0, 0),
is(M <- fac2sparse(f30, drop=FALSE),"CsparseMatrix"), dim(M) == c(3, 0),
is(M <- fac2sparse(f12, drop= TRUE),"CsparseMatrix"), dim(M) == c(0,12),
is(M <- fac2sparse(f12, drop=FALSE),"CsparseMatrix"), dim(M) == c(3,12)
)
Sparse LU Factorizations
Description
sparseLU
is the class of sparse, row- and column-pivoted
LU factorizations of n \times n
real matrices A
,
having the general form
P_{1} A P_{2} = L U
or (equivalently)
A = P_{1}' L U P_{2}'
where
P_{1}
and P_{2}
are permutation matrices,
L
is a unit lower triangular matrix, and
U
is an upper triangular matrix.
Slots
Dim
,Dimnames
inherited from virtual class
MatrixFactorization
.L
an object of class
dtCMatrix
, the unit lower triangularL
factor.U
an object of class
dtCMatrix
, the upper triangularU
factor.p
,q
0-based integer vectors of length
Dim[1]
, specifying the permutations applied to the rows and columns of the factorized matrix.q
of length 0 is valid and equivalent to the identity permutation, implying no column pivoting. Using R syntax, the matrixP_{1} A P_{2}
is preciselyA[p+1, q+1]
(A[p+1, ]
whenq
has length 0).
Extends
Class LU
, directly.
Class MatrixFactorization
, by class
LU
, distance 2.
Instantiation
Objects can be generated directly by calls of the form
new("sparseLU", ...)
, but they are more typically obtained
as the value of lu(x)
for x
inheriting from
sparseMatrix
(often dgCMatrix
).
Methods
determinant
signature(from = "sparseLU", logarithm = "logical")
: computes the determinant of the factorized matrixA
or its logarithm.expand
signature(x = "sparseLU")
: seeexpand-methods
.expand1
signature(x = "sparseLU")
: seeexpand1-methods
.expand2
signature(x = "sparseLU")
: seeexpand2-methods
.solve
signature(a = "sparseLU", b = .)
: seesolve-methods
.
References
Davis, T. A. (2006). Direct methods for sparse linear systems. Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898718881
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
Class denseLU
for dense LU factorizations.
Class dgCMatrix
.
Generic functions lu
,
expand1
and expand2
.
Examples
showClass("sparseLU")
set.seed(2)
A <- as(readMM(system.file("external", "pores_1.mtx", package = "Matrix")),
"CsparseMatrix")
(n <- A@Dim[1L])
## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- list(paste0("r", seq_len(n)),
paste0("c", seq_len(n)))
(lu.A <- lu(A))
str(e.lu.A <- expand2(lu.A), max.level = 2L)
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)
## A ~ P1' L U P2' in floating point
stopifnot(exprs = {
identical(names(e.lu.A), c("P1.", "L", "U", "P2."))
identical(e.lu.A[["P1."]],
new("pMatrix", Dim = c(n, n), Dimnames = c(dn[1L], list(NULL)),
margin = 1L, perm = invertPerm(lu.A@p, 0L, 1L)))
identical(e.lu.A[["P2."]],
new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
margin = 2L, perm = invertPerm(lu.A@q, 0L, 1L)))
identical(e.lu.A[["L"]], lu.A@L)
identical(e.lu.A[["U"]], lu.A@U)
ae1(A, with(e.lu.A, P1. %*% L %*% U %*% P2.))
ae2(A[lu.A@p + 1L, lu.A@q + 1L], with(e.lu.A, L %*% U))
})
## Factorization handled as factorized matrix
b <- rnorm(n)
stopifnot(identical(det(A), det(lu.A)),
identical(solve(A, b), solve(lu.A, b)))
General Sparse Matrix Construction from Nonzero Entries
Description
User-friendly construction of sparse matrices (inheriting from
virtual class
CsparseMatrix
,
RsparseMatrix
, or
TsparseMatrix
)
from the positions and values of their nonzero entries.
This interface is recommended over direct construction via
calls such as new("..[CRT]Matrix", ...)
.
Usage
sparseMatrix(i, j, p, x, dims, dimnames,
symmetric = FALSE, triangular = FALSE, index1 = TRUE,
repr = c("C", "R", "T"), giveCsparse,
check = TRUE, use.last.ij = FALSE)
Arguments
i , j |
integer vectors of equal length specifying the positions
(row and column indices) of the nonzero (or non- |
p |
integer vector of pointers, one for each column (or row),
to the initial (zero-based) index of elements in the column (or row).
Exactly one of |
x |
optional, typically nonzero values for the matrix entries.
If specified, then the length must equal that of |
dims |
optional length-2 integer vector of matrix dimensions.
If missing, then |
dimnames |
optional list of |
symmetric |
logical indicating if the resulting matrix should
be symmetric. In that case, |
triangular |
logical indicating if the resulting matrix should
be triangular. In that case, |
index1 |
logical. If |
repr |
|
giveCsparse |
(deprecated, replaced by |
check |
logical indicating whether to check that the result is
formally valid before returning. Do not set to |
use.last.ij |
logical indicating if, in the case of repeated
(duplicated) pairs |
Details
Exactly one of the arguments i
, j
and p
must be
missing.
In typical usage, p
is missing, i
and j
are
vectors of positive integers and x
is a numeric vector. These
three vectors, which must have the same length, form the triplet
representation of the sparse matrix.
If i
or j
is missing then p
must be a
non-decreasing integer vector whose first element is zero. It
provides the compressed, or “pointer” representation of the row
or column indices, whichever is missing. The expanded form of p
,
rep(seq_along(dp),dp)
where dp <- diff(p)
, is used as
the (1-based) row or column indices.
You cannot set both singular
and triangular
to true;
rather use Diagonal()
(or its alternatives, see there).
The values of i
, j
, p
and index1
are used
to create 1-based index vectors i
and j
from which a
TsparseMatrix
is constructed, with numerical
values given by x
, if non-missing. Note that in that case,
when some pairs (i_k,j_k)
are repeated (aka
“duplicated”), the corresponding x_k
are added, in
consistency with the definition of the
TsparseMatrix
class, unless use.last.ij
is set to true.
By default, when repr = "C"
, the CsparseMatrix
derived from this triplet form is returned, where repr = "R"
now
allows to directly get an RsparseMatrix
and
repr = "T"
leaves the result as TsparseMatrix
.
The reason for returning a CsparseMatrix
object
instead of the triplet format by default is that the compressed column
form is easier to work with when performing matrix operations. In
particular, if there are no zeros in x
then a
CsparseMatrix
is a unique representation of the
sparse matrix.
Value
A sparse matrix, by default in compressed sparse column format and
(formally) without symmetric or triangular structure, i.e.,
by default inheriting from both CsparseMatrix
and generalMatrix
.
Note
You do need to use index1 = FALSE
(or add + 1
to i
and j
) if you want use the 0-based i
(and
j
) slots from existing sparse matrices.
See Also
Matrix(*, sparse=TRUE)
for the constructor of
such matrices from a dense matrix. That is easier in small
sample, but much less efficient (or impossible) for large matrices,
where something like sparseMatrix()
is needed.
Further bdiag
and Diagonal
for (block-)diagonal and
bandSparse
for banded sparse matrix constructors.
Random sparse matrices via rsparsematrix()
.
The standard R xtabs(*, sparse=TRUE)
, for sparse tables
and sparse.model.matrix()
for building sparse model
matrices.
Consider CsparseMatrix
and similar class
definition help files.
Examples
## simple example
i <- c(1,3:8); j <- c(2,9,6:10); x <- 7 * (1:7)
(A <- sparseMatrix(i, j, x = x)) ## 8 x 10 "dgCMatrix"
summary(A)
str(A) # note that *internally* 0-based row indices are used
(sA <- sparseMatrix(i, j, x = x, symmetric = TRUE)) ## 10 x 10 "dsCMatrix"
(tA <- sparseMatrix(i, j, x = x, triangular= TRUE)) ## 10 x 10 "dtCMatrix"
stopifnot( all(sA == tA + t(tA)) ,
identical(sA, as(tA + t(tA), "symmetricMatrix")))
## dims can be larger than the maximum row or column indices
(AA <- sparseMatrix(c(1,3:8), c(2,9,6:10), x = 7 * (1:7), dims = c(10,20)))
summary(AA)
## i, j and x can be in an arbitrary order, as long as they are consistent
set.seed(1); (perm <- sample(1:7))
(A1 <- sparseMatrix(i[perm], j[perm], x = x[perm]))
stopifnot(identical(A, A1))
## The slots are 0-index based, so
try( sparseMatrix(i=A@i, p=A@p, x= seq_along(A@x)) )
## fails and you should say so: 1-indexing is FALSE:
sparseMatrix(i=A@i, p=A@p, x= seq_along(A@x), index1 = FALSE)
## the (i,j) pairs can be repeated, in which case the x's are summed
(args <- data.frame(i = c(i, 1), j = c(j, 2), x = c(x, 2)))
(Aa <- do.call(sparseMatrix, args))
## explicitly ask for elimination of such duplicates, so
## that the last one is used:
(A. <- do.call(sparseMatrix, c(args, list(use.last.ij = TRUE))))
stopifnot(Aa[1,2] == 9, # 2+7 == 9
A.[1,2] == 2) # 2 was *after* 7
## for a pattern matrix, of course there is no "summing":
(nA <- do.call(sparseMatrix, args[c("i","j")]))
dn <- list(LETTERS[1:3], letters[1:5])
## pointer vectors can be used, and the (i,x) slots are sorted if necessary:
m <- sparseMatrix(i = c(3,1, 3:2, 2:1), p= c(0:2, 4,4,6), x = 1:6, dimnames = dn)
m
str(m)
stopifnot(identical(dimnames(m), dn))
sparseMatrix(x = 2.72, i=1:3, j=2:4) # recycling x
sparseMatrix(x = TRUE, i=1:3, j=2:4) # recycling x, |--> "lgCMatrix"
## no 'x' --> patter*n* matrix:
(n <- sparseMatrix(i=1:6, j=rev(2:7)))# -> ngCMatrix
## an empty sparse matrix:
(e <- sparseMatrix(dims = c(4,6), i={}, j={}))
## a symmetric one:
(sy <- sparseMatrix(i= c(2,4,3:5), j= c(4,7:5,5), x = 1:5,
dims = c(7,7), symmetric=TRUE))
stopifnot(isSymmetric(sy),
identical(sy, ## switch i <-> j {and transpose }
t( sparseMatrix(j= c(2,4,3:5), i= c(4,7:5,5), x = 1:5,
dims = c(7,7), symmetric=TRUE))))
## rsparsematrix() calls sparseMatrix() :
M1 <- rsparsematrix(1000, 20, nnz = 200)
summary(M1)
## pointers example in converting from other sparse matrix representations.
if(requireNamespace("SparseM") &&
packageVersion("SparseM") >= "0.87" &&
nzchar(dfil <- system.file("extdata", "rua_32_ax.rua", package = "SparseM"))) {
X <- SparseM::model.matrix(SparseM::read.matrix.hb(dfil))
XX <- sparseMatrix(j = X@ja, p = X@ia - 1L, x = X@ra, dims = X@dimension)
validObject(XX)
## Alternatively, and even more user friendly :
X. <- as(X, "Matrix") # or also
X2 <- as(X, "sparseMatrix")
stopifnot(identical(XX, X.), identical(X., X2))
}
Virtual Class "sparseMatrix" — Mother of Sparse Matrices
Description
Virtual Mother Class of All Sparse Matrices
Slots
Dim
:Object of class
"integer"
- the dimensions of the matrix - must be an integer vector with exactly two non-negative values.Dimnames
:a list of length two - inherited from class
Matrix
, seeMatrix
.
Extends
Class "Matrix"
, directly.
Methods
- show
(object = "sparseMatrix")
: Theshow
method for sparse matrices prints “structural” zeroes as"."
usingprintSpMatrix()
which allows further customization.signature(x = "sparseMatrix")
, ....
Theprint
method for sparse matrices by default is the same asshow()
but can be called with extra optional arguments, seeprintSpMatrix()
.- format
signature(x = "sparseMatrix")
, ....
Theformat
method for sparse matrices, seeformatSpMatrix()
for details such as the extra optional arguments.- summary
(object = "sparseMatrix", uniqT=FALSE)
: Returns an object of S3 class"sparseSummary"
which is basically adata.frame
with columns(i,j,x)
(or just(i,j)
fornsparseMatrix
class objects) with the stored (typically non-zero) entries. Theprint
method resembles Matlab's way of printing sparse matrices, and also the MatrixMarket format, seewriteMM
.- cbind2
(x = *, y = *)
: several methods for binding matrices together, column-wise, see the basiccbind
andrbind
functions.
Note that the result will typically be sparse, even when one argument is dense and larger than the sparse one.- rbind2
(x = *, y = *)
: binding matrices together row-wise, seecbind2
above.- determinant
(x = "sparseMatrix", logarithm=TRUE)
:determinant()
methods for sparse matrices typically work viaCholesky
orlu
decompositions.- diag
(x = "sparseMatrix")
: extracts the diagonal of a sparse matrix.- dim<-
signature(x = "sparseMatrix", value = "ANY")
: allows to reshape a sparse matrix to a sparse matrix with the same entries but different dimensions.value
must be of length two and fulfillprod(value) == prod(dim(x))
.- coerce
signature(from = "factor", to = "sparseMatrix")
: Coercion of a factor to"sparseMatrix"
produces the matrix of indicator rows stored as an object of class"dgCMatrix"
. To obtain columns representing the interaction of the factor and a numeric covariate, replace the"x"
slot of the result by the numeric covariate then take the transpose. Missing values (NA
) from the factor are translated to columns of all0
s.
See also colSums
, norm
,
...
for methods with separate help pages.
Note
In method selection for multiplication operations (i.e. %*%
and the two-argument form of crossprod
)
the sparseMatrix class takes precedence in the sense that if one
operand is a sparse matrix and the other is any type of dense matrix
then the dense matrix is coerced to a dgeMatrix
and the
appropriate sparse matrix method is used.
See Also
sparseMatrix
, and its references, such as
xtabs(*, sparse=TRUE)
, or
sparse.model.matrix()
,
for constructing sparse matrices.
T2graph
for conversion of "graph"
objects
(package graph) to and from sparse matrices.
Examples
showClass("sparseMatrix") ## and look at the help() of its subclasses
M <- Matrix(0, 10000, 100)
M[1,1] <- M[2,3] <- 3.14
M ## show(.) method suppresses printing of the majority of rows
data(CAex, package = "Matrix")
dim(CAex) # 72 x 72 matrix
determinant(CAex) # works via sparse lu(.)
## factor -> t( <sparse design matrix> ) :
(fact <- gl(5, 3, 30, labels = LETTERS[1:5]))
(Xt <- as(fact, "sparseMatrix")) # indicator rows
## missing values --> all-0 columns:
f.mis <- fact
i.mis <- c(3:5, 17)
is.na(f.mis) <- i.mis
Xt != (X. <- as(f.mis, "sparseMatrix")) # differ only in columns 3:5,17
stopifnot(all(X.[,i.mis] == 0), all(Xt[,-i.mis] == X.[,-i.mis]))
Sparse QR Factorizations
Description
sparseQR
is the class of sparse, row- and column-pivoted
QR factorizations of m \times n
(m \ge n
)
real matrices, having the general form
P_1 A P_2 = Q R = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1 R_1
or (equivalently)
A = P_1' Q R P_2' = P_1' \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} P_2' = P_1' Q_1 R_1 P_2'
where
P_1
and P_2
are permutation matrices,
Q = \prod_{j = 1}^{n} H_j
is an m \times m
orthogonal matrix
(Q_1
contains the first n
column vectors)
equal to the product of n
Householder matrices H_j
, and
R
is an m \times n
upper trapezoidal matrix
(R_1
contains the first n
row vectors and is
upper triangular).
Usage
qrR(qr, complete = FALSE, backPermute = TRUE, row.names = TRUE)
Arguments
qr |
an object of class |
complete |
a logical indicating if |
backPermute |
a logical indicating if |
row.names |
a logical indicating if |
Details
The method for qr.Q
does not return Q
but rather the
(also orthogonal) product P_1' Q
. This behaviour
is algebraically consistent with the base implementation
(see qr
), which can be seen by noting that
qr.default
in base does not pivot rows, constraining
P_1
to be an identity matrix. It follows that
qr.Q(qr.default(x))
also returns P_1' Q
.
Similarly, the methods for qr.qy
and qr.qty
multiply
on the left by P_1' Q
and Q' P_1
rather than Q
and Q'
.
It is wrong to expect the values of qr.Q
(or qr.R
,
qr.qy
, qr.qty
) computed from “equivalent”
sparse and dense factorizations
(say, qr(x)
and qr(as(x, "matrix"))
for x
of class dgCMatrix
) to compare equal.
The underlying factorization algorithms are quite different,
notably as they employ different pivoting strategies,
and in general the factorization is not unique even for fixed
P_1
and P_2
.
On the other hand, the values of qr.X
, qr.coef
,
qr.fitted
, and qr.resid
are well-defined, and
in those cases the sparse and dense computations should
compare equal (within some tolerance).
The method for qr.R
is a simple wrapper around qrR
,
but not back-permuting by default and never giving row names.
It did not support backPermute = TRUE
until Matrix
1.6-0
, hence code needing the back-permuted result should
call qrR
if Matrix >= 1.6-0
is not known.
Slots
Dim
,Dimnames
inherited from virtual class
MatrixFactorization
.beta
a numeric vector of length
Dim[2]
, used to construct Householder matrices; seeV
below.V
an object of class
dgCMatrix
withDim[2]
columns. The number of rowsnrow(V)
is at leastDim[1]
and at mostDim[1]+Dim[2]
.V
is lower trapezoidal, and its column vectors generate the Householder matricesH_j
that compose the orthogonalQ
factor. Specifically,H_j
is constructed asdiag(Dim[1]) - beta[j] * tcrossprod(V[, j])
.R
an object of class
dgCMatrix
withnrow(V)
rows andDim[2]
columns.R
is the upper trapezoidalR
factor.p
,q
0-based integer vectors of length
nrow(V)
andDim[2]
, respectively, specifying the permutations applied to the rows and columns of the factorized matrix.q
of length 0 is valid and equivalent to the identity permutation, implying no column pivoting. Using R syntax, the matrixP_1 A P_2
is preciselyA[p+1, q+1]
(A[p+1, ]
whenq
has length 0).
Extends
Class QR
, directly.
Class MatrixFactorization
, by class
QR
, distance 2.
Instantiation
Objects can be generated directly by calls of the form
new("sparseQR", ...)
, but they are more typically obtained
as the value of qr(x)
for x
inheriting from
sparseMatrix
(often dgCMatrix
).
Methods
determinant
signature(from = "sparseQR", logarithm = "logical")
: computes the determinant of the factorized matrixA
or its logarithm.expand1
signature(x = "sparseQR")
: seeexpand1-methods
.expand2
signature(x = "sparseQR")
: seeexpand2-methods
.qr.Q
signature(qr = "sparseQR")
: returns as adgeMatrix
eitherP_1' Q
orP_1' Q_1
, depending on optional argumentcomplete
. The default isFALSE
, indicatingP_1' Q_1
.qr.R
signature(qr = "sparseQR")
:qrR
returnsR
,R_1
,R P2'
, orR_1 P2'
, depending on optional argumentscomplete
andbackPermute
. The default in both cases isFALSE
, indicatingR_1
, for compatibility with base. The class of the result in that case isdtCMatrix
. In the other three cases, it isdgCMatrix
.qr.X
signature(qr = "sparseQR")
: returnsA
as adgeMatrix
, by default. Ifm > n
and optional argumentncol
is greater thann
, then the result is augmented withP_1' Q J
, whereJ
is composed of columns(n+1)
throughncol
of them \times m
identity matrix.qr.coef
signature(qr = "sparseQR", y = .)
: returns as adgeMatrix
or vector the result of multiplyingy
on the left byP_2 R_1^{-1} Q_1' P_1
.qr.fitted
signature(qr = "sparseQR", y = .)
: returns as adgeMatrix
or vector the result of multiplyingy
on the left byP_1' Q_1 Q_1' P_1
.qr.resid
signature(qr = "sparseQR", y = .)
: returns as adgeMatrix
or vector the result of multiplyingy
on the left byP_1' Q_2 Q_2' P_1
.qr.qty
signature(qr = "sparseQR", y = .)
: returns as adgeMatrix
or vector the result of multiplyingy
on the left byQ' P_1
.qr.qy
signature(qr = "sparseQR", y = .)
: returns as adgeMatrix
or vector the result of multiplyingy
on the left byP_1' Q
.solve
signature(a = "sparseQR", b = .)
: seesolve-methods
.
References
Davis, T. A. (2006). Direct methods for sparse linear systems. Society for Industrial and Applied Mathematics. doi:10.1137/1.9780898718881
Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press. doi:10.56021/9781421407944
See Also
Class dgCMatrix
.
Generic function qr
from base,
whose default method qr.default
“defines”
the S3 class qr
of dense QR factorizations.
qr-methods
for methods defined in Matrix.
Generic functions expand1
and expand2
.
The many auxiliary functions for QR factorizations:
qr.Q
, qr.R
, qr.X
,
qr.coef
, qr.fitted
, qr.resid
,
qr.qty
, qr.qy
, and qr.solve
.
Examples
showClass("sparseQR")
set.seed(2)
m <- 300L
n <- 60L
A <- rsparsematrix(m, n, 0.05)
## With dimnames, to see that they are propagated :
dimnames(A) <- dn <- list(paste0("r", seq_len(m)),
paste0("c", seq_len(n)))
(qr.A <- qr(A))
str(e.qr.A <- expand2(qr.A, complete = FALSE), max.level = 2L)
str(E.qr.A <- expand2(qr.A, complete = TRUE), max.level = 2L)
t(sapply(e.qr.A, dim))
t(sapply(E.qr.A, dim))
## Horribly inefficient, but instructive :
slowQ <- function(V, beta) {
d <- dim(V)
Q <- diag(d[1L])
if(d[2L] > 0L) {
for(j in d[2L]:1L) {
cat(j, "\n", sep = "")
Q <- Q - (beta[j] * tcrossprod(V[, j])) %*% Q
}
}
Q
}
ae1 <- function(a, b, ...) all.equal(as(a, "matrix"), as(b, "matrix"), ...)
ae2 <- function(a, b, ...) ae1(unname(a), unname(b), ...)
## A ~ P1' Q R P2' ~ P1' Q1 R1 P2' in floating point
stopifnot(exprs = {
identical(names(e.qr.A), c("P1.", "Q1", "R1", "P2."))
identical(names(E.qr.A), c("P1.", "Q" , "R" , "P2."))
identical(e.qr.A[["P1."]],
new("pMatrix", Dim = c(m, m), Dimnames = c(dn[1L], list(NULL)),
margin = 1L, perm = invertPerm(qr.A@p, 0L, 1L)))
identical(e.qr.A[["P2."]],
new("pMatrix", Dim = c(n, n), Dimnames = c(list(NULL), dn[2L]),
margin = 2L, perm = invertPerm(qr.A@q, 0L, 1L)))
identical(e.qr.A[["R1"]], triu(E.qr.A[["R"]][seq_len(n), ]))
identical(e.qr.A[["Q1"]], E.qr.A[["Q"]][, seq_len(n)] )
identical(E.qr.A[["R"]], qr.A@R)
## ae1(E.qr.A[["Q"]], slowQ(qr.A@V, qr.A@beta))
ae1(crossprod(E.qr.A[["Q"]]), diag(m))
ae1(A, with(e.qr.A, P1. %*% Q1 %*% R1 %*% P2.))
ae1(A, with(E.qr.A, P1. %*% Q %*% R %*% P2.))
ae2(A.perm <- A[qr.A@p + 1L, qr.A@q + 1L], with(e.qr.A, Q1 %*% R1))
ae2(A.perm , with(E.qr.A, Q %*% R ))
})
## More identities
b <- rnorm(m)
stopifnot(exprs = {
ae1(qrX <- qr.X (qr.A ), A)
ae2(qrQ <- qr.Q (qr.A ), with(e.qr.A, P1. %*% Q1))
ae2( qr.R (qr.A ), with(e.qr.A, R1))
ae2(qrc <- qr.coef (qr.A, b), with(e.qr.A, solve(R1 %*% P2., t(qrQ)) %*% b))
ae2(qrf <- qr.fitted(qr.A, b), with(e.qr.A, tcrossprod(qrQ) %*% b))
ae2(qrr <- qr.resid (qr.A, b), b - qrf)
ae2(qrq <- qr.qy (qr.A, b), with(E.qr.A, P1. %*% Q %*% b))
ae2(qr.qty(qr.A, qrq), b)
})
## Sparse and dense computations should agree here
qr.Am <- qr(as(A, "matrix")) # <=> qr.default(A)
stopifnot(exprs = {
ae2(qrX, qr.X (qr.Am ))
ae2(qrc, qr.coef (qr.Am, b))
ae2(qrf, qr.fitted(qr.Am, b))
ae2(qrr, qr.resid (qr.Am, b))
})
Sparse Vector Construction from Nonzero Entries
Description
User friendly construction of sparse vectors,
i.e., objects inheriting from class
sparseVector
, from indices and values of its
non-zero entries.
Usage
sparseVector(x, i, length)
Arguments
x |
vector of the non zero entries; may be missing in which case a
|
i |
integer vector (of the same length as |
length |
length of the sparse vector. |
Details
zero entries in x
are dropped automatically, analogously as
drop0()
acts on sparse matrices.
Value
a sparse vector, i.e., inheriting from class
sparseVector
.
Author(s)
Martin Maechler
See Also
sparseMatrix()
constructor for sparse matrices;
the class sparseVector
.
Examples
str(sv <- sparseVector(x = 1:10, i = sample(999, 10), length=1000))
sx <- c(0,0,3, 3.2, 0,0,0,-3:1,0,0,2,0,0,5,0,0)
ss <- as(sx, "sparseVector")
stopifnot(identical(ss,
sparseVector(x = c(2, -1, -2, 3, 1, -3, 5, 3.2),
i = c(15L, 10:9, 3L,12L,8L,18L, 4L), length = 20L)))
(ns <- sparseVector(i= c(7, 3, 2), length = 10))
stopifnot(identical(ns,
new("nsparseVector", length = 10, i = c(2, 3, 7))))
Sparse Vector Classes
Description
Sparse Vector Classes: The virtual mother class
"sparseVector"
has the five actual daughter classes
"dsparseVector"
, "isparseVector"
,
"lsparseVector"
, "nsparseVector"
, and
"zsparseVector"
, where we've mainly implemented methods for
the d*
, l*
and n*
ones.
Slots
length
:class
"numeric"
- thelength
of the sparse vector. Note that"numeric"
can be considerably larger than the maximal"integer"
,.Machine$integer.max
, on purpose.i
:class
"numeric"
- the (1-based) indices of the non-zero entries. Must not beNA
and strictly sorted increasingly.Note that
"integer"
is “part of”"numeric"
, and can (and often will) be used for non-huge sparseVectors.x
:(for all but
"nsparseVector"
): the non-zero entries. This is of class"numeric"
for class"dsparseVector"
,"logical"
for class"lsparseVector"
, etc.
Methods
- length
signature(x = "sparseVector")
: simply extracts thelength
slot.- show
signature(object = "sparseVector")
: Theshow
method for sparse vectors prints “structural” zeroes as"."
using the non-exportedprSpVector
function which allows further customization such as replacing"."
by" "
(blank).Note that
options(max.print)
will influence how many entries of large sparse vectors are printed at all.- as.vector
signature(x = "sparseVector", mode = "character")
coerces sparse vectors to “regular”, i.e., atomic vectors. This is the same asas(x, "vector")
.- as
..: see
coerce
below- coerce
signature(from = "sparseVector", to = "sparseMatrix")
, and- coerce
signature(from = "sparseMatrix", to = "sparseVector")
, etc: coercions to and from sparse matrices (sparseMatrix
) are provided and work analogously as in standard R, i.e., a vector is coerced to a 1-column matrix.- dim<-
signature(x = "sparseVector", value = "integer")
coerces a sparse vector to a sparse Matrix, i.e., an object inheriting fromsparseMatrix
, of the appropriate dimension.- head
signature(x = "sparseVector")
: as with R's (package util)head
,head(x,n)
(forn >= 1
) is equivalent tox[1:n]
, but here can be much more efficient, see the example.- tail
signature(x = "sparseVector")
: analogous tohead
, see above.- toeplitz
signature(x = "sparseVector")
: astoeplitz(x)
, produce then \times n
Toeplitz matrix fromx
, wheren = length(x)
.- rep
signature(x = "sparseVector")
repeatx
, with the same argument list(x, times, length.out, each, ...)
as the default method for rep().- which
signature(x = "nsparseVector")
and- which
signature(x = "lsparseVector")
return the indices of the non-zero entries (which is trivial for sparse vectors).- Ops
signature(e1 = "sparseVector", e2 = "*")
: define arithmetic, compare and logic operations, (seeOps
).- Summary
signature(x = "sparseVector")
: define all theSummary
methods.- is.na, is.finite, is.infinite
(x = "sparseVector")
, and- is.na, is.finite, is.infinite
(x = "nsparseVector")
: returnlogical
or"nsparseVector"
of the same length asx
, indicating if/wherex
isNA
(orNaN
), finite or infinite, entirely analogously to the corresponding base R functions.- zapsmall
signature(x = "sparseVectors")
: typically used for numeric sparse vector:round()
entries such that (relatively) very small entries become zero exactly.
c.sparseVector()
is an S3 method for all
"sparseVector"
s, but automatic dispatch only happens for the
first argument, so it is useful also as regular R function, see the
examples.
See Also
sparseVector()
for friendly construction of sparse
vectors (apart from as(*, "sparseVector")
).
Examples
getClass("sparseVector")
getClass("dsparseVector")
sx <- c(0,0,3, 3.2, 0,0,0,-3:1,0,0,2,0,0,5,0,0)
(ss <- as(sx, "sparseVector"))
ix <- as.integer(round(sx))
(is <- as(ix, "sparseVector")) ## an "isparseVector" (!)
(ns <- sparseVector(i= c(7, 3, 2), length = 10)) # "nsparseVector"
## rep() works too:
(ri <- rep(is, length.out= 25))
## Using `dim<-` as in base R :
r <- ss
dim(r) <- c(4,5) # becomes a sparse Matrix:
r
## or coercion (as as.matrix() in base R):
as(ss, "Matrix")
stopifnot(all(ss == print(as(ss, "CsparseMatrix"))))
## currently has "non-structural" FALSE -- printing as ":"
(lis <- is & FALSE)
(nn <- is[is == 0]) # all "structural" FALSE
## NA-case
sN <- sx; sN[4] <- NA
(svN <- as(sN, "sparseVector"))
v <- as(c(0,0,3, 3.2, rep(0,9),-3,0,-1, rep(0,20),5,0),
"sparseVector")
v <- rep(rep(v, 50), 5000)
set.seed(1); v[sample(v@i, 1e6)] <- 0
str(v)
system.time(for(i in 1:4) hv <- head(v, 1e6))
## user system elapsed
## 0.033 0.000 0.032
system.time(for(i in 1:4) h2 <- v[1:1e6])
## user system elapsed
## 1.317 0.000 1.319
stopifnot(identical(hv, h2),
identical(is | FALSE, is != 0),
validObject(svN), validObject(lis), as.logical(is.na(svN[4])),
identical(is^2 > 0, is & TRUE),
all(!lis), !any(lis), length(nn@i) == 0, !any(nn), all(!nn),
sum(lis) == 0, !prod(lis), range(lis) == c(0,0))
## create and use the t(.) method:
t(x20 <- sparseVector(c(9,3:1), i=c(1:2,4,7), length=20))
(T20 <- toeplitz(x20))
stopifnot(is(T20, "symmetricMatrix"), is(T20, "sparseMatrix"),
identical(unname(as.matrix(T20)),
toeplitz(as.vector(x20))))
## c() method for "sparseVector" - also available as regular function
(c1 <- c(x20, 0,0,0, -10*x20))
(c2 <- c(ns, is, FALSE))
(c3 <- c(ns, !ns, TRUE, NA, FALSE))
(c4 <- c(ns, rev(ns)))
## here, c() would produce a list {not dispatching to c.sparseVector()}
(c5 <- c.sparseVector(0,0, x20))
## checking (consistency)
.v <- as.vector
.s <- function(v) as(v, "sparseVector")
stopifnot(exprs = {
all.equal(c1, .s(c(.v(x20), 0,0,0, -10*.v(x20))), tol = 0)
all.equal(c2, .s(c(.v(ns), .v(is), FALSE)), tol = 0)
all.equal(c3, .s(c(.v(ns), !.v(ns), TRUE, NA, FALSE)), tol = 0)
all.equal(c4, .s(c(.v(ns), rev(.v(ns)))), tol = 0,
check.class = FALSE)
all.equal(c5, .s(c(0,0, .v(x20))), tol = 0)
})
Sparse Matrix Constructor From Triplet
Description
User friendly construction of a sparse matrix (inheriting from class
TsparseMatrix
) from the triplet representation.
This is much less flexible than sparseMatrix()
and hence
somewhat deprecated.
Usage
spMatrix(nrow, ncol, i = integer(0L), j = integer(0L), x = double(0L))
Arguments
nrow , ncol |
integers specifying the desired number of rows and columns. |
i , j |
integer vectors of the same length specifying the locations
of the non-zero (or non- |
x |
atomic vector of the same length as |
Value
A sparse matrix in triplet form, as an R object inheriting from both
TsparseMatrix
and
generalMatrix
.
The matrix M
will have
M[i[k], j[k]] == x[k]
, for k = 1,2,\ldots, n
, where
n = length(i)
and
M[ i', j' ] == 0
for all other pairs (i',j')
.
See Also
Matrix(*, sparse=TRUE)
for the more usual
constructor of such matrices. Then, sparseMatrix
is more general and flexible than spMatrix()
and by default
returns a CsparseMatrix
which is often slightly
more desirable. Further, bdiag
and
Diagonal
for (block-)diagonal matrix constructors.
Consider TsparseMatrix
and similar class
definition help files.
Examples
## simple example
A <- spMatrix(10,20, i = c(1,3:8),
j = c(2,9,6:10),
x = 7 * (1:7))
A # a "dgTMatrix"
summary(A)
str(A) # note that *internally* 0-based indices (i,j) are used
L <- spMatrix(9, 30, i = rep(1:9, 3), 1:27,
(1:27) %% 4 != 1)
L # an "lgTMatrix"
## A simplified predecessor of Matrix' rsparsematrix() function :
rSpMatrix <- function(nrow, ncol, nnz,
rand.x = function(n) round(rnorm(nnz), 2))
{
## Purpose: random sparse matrix
## --------------------------------------------------------------
## Arguments: (nrow,ncol): dimension
## nnz : number of non-zero entries
## rand.x: random number generator for 'x' slot
## --------------------------------------------------------------
## Author: Martin Maechler, Date: 14.-16. May 2007
stopifnot((nnz <- as.integer(nnz)) >= 0,
nrow >= 0, ncol >= 0, nnz <= nrow * ncol)
spMatrix(nrow, ncol,
i = sample(nrow, nnz, replace = TRUE),
j = sample(ncol, nnz, replace = TRUE),
x = rand.x(nnz))
}
M1 <- rSpMatrix(100000, 20, nnz = 200)
summary(M1)
Methods for "[<-" - Assigning to Subsets for 'Matrix'
Description
Methods for "[<-"
, i.e., extraction or subsetting mostly of
matrices, in package Matrix.
Note: Contrary to standard matrix
assignment in
base R, in x[..] <- val
it is typically an error (see
stop
) when the type or class
of
val
would require the class of x
to be changed, e.g.,
when x
is logical, say "lsparseMatrix"
, and val
is numeric.
In other cases, e.g., when x
is a "nsparseMatrix"
and
val
is not TRUE
or FALSE
, a warning is signalled,
and val
is “interpreted” as logical
, and
(logical) NA
is interpreted as TRUE
.
Methods
There are many many more than these:
- x = "Matrix", i = "missing", j = "missing", value= "ANY"
-
is currently a simple fallback method implementation which ensures “readable” error messages.
- x = "Matrix", i = "ANY", j = "ANY", value= "ANY"
currently gives an error
- x = "denseMatrix", i = "index", j = "missing", value= "numeric"
...
- x = "denseMatrix", i = "index", j = "index", value= "numeric"
...
- x = "denseMatrix", i = "missing", j = "index", value= "numeric"
...
See Also
[-methods
for subsetting "Matrix"
objects; the
index
class;
Extract
about the standard subset assignment (and extraction).
Examples
set.seed(101)
(a <- m <- Matrix(round(rnorm(7*4),2), nrow = 7))
a[] <- 2.2 # <<- replaces **every** entry
a
## as do these:
a[,] <- 3 ; a[TRUE,] <- 4
m[2, 3] <- 3.14 # simple number
m[3, 3:4]<- 3:4 # simple numeric of length 2
## sub matrix assignment:
m[-(4:7), 3:4] <- cbind(1,2:4) #-> upper right corner of 'm'
m[3:5, 2:3] <- 0
m[6:7, 1:2] <- Diagonal(2)
m
## rows or columns only:
m[1,] <- 10
m[,2] <- 1:7
m[-(1:6), ] <- 3:0 # not the first 6 rows, i.e. only the 7th
as(m, "sparseMatrix")
Methods for "[": Extraction or Subsetting in Package 'Matrix'
Description
Methods for "["
, i.e., extraction or subsetting mostly of
matrices, in package Matrix.
Methods
There are more than these:
- x = "Matrix", i = "missing", j = "missing", drop= "ANY"
...
- x = "Matrix", i = "numeric", j = "missing", drop= "missing"
...
- x = "Matrix", i = "missing", j = "numeric", drop= "missing"
...
- x = "dsparseMatrix", i = "missing", j = "numeric", drop= "logical"
...
- x = "dsparseMatrix", i = "numeric", j = "missing", drop= "logical"
...
- x = "dsparseMatrix", i = "numeric", j = "numeric", drop= "logical"
...
See Also
[<–methods
for subassignment to "Matrix"
objects.
Extract
about the standard extraction.
Examples
str(m <- Matrix(round(rnorm(7*4),2), nrow = 7))
stopifnot(identical(m, m[]))
m[2, 3] # simple number
m[2, 3:4] # simple numeric of length 2
m[2, 3:4, drop=FALSE] # sub matrix of class 'dgeMatrix'
## rows or columns only:
m[1,] # first row, as simple numeric vector
m[,1:2] # sub matrix of first two columns
showMethods("[", inherited = FALSE)
Virtual Class of Symmetric Matrices in Package Matrix
Description
The virtual class of symmetric matrices, "symmetricMatrix"
,
from the package Matrix contains numeric and logical, dense and
sparse matrices, e.g., see the examples with the “actual”
subclasses.
The main use is in methods (and C functions) that can deal with
all symmetric matrices, and in as(*, "symmetricMatrix")
.
Slots
Dim, Dimnames
inherited from virtual class
Matrix
. See comments below about symmetry ofDimnames
.factors
a list of
MatrixFactorization
objects caching factorizations of the matrix. Typically, it is initialized as an empty list and updated “automagically” whenever a factorization is computed.uplo
a character string, either
"U"
or"L"
indicating that only entries in the upper or lower triangle are referenced.
Extends
Class "Matrix"
, directly.
Methods
- dimnames
signature(object = "symmetricMatrix")
: returns symmetricdimnames
, even when theDimnames
slot only has row or column names. This allows to save storage for large (typically sparse) symmetric matrices.- isSymmetric
signature(object = "symmetricMatrix")
: returnsTRUE
trivially.
There's a C function symmetricMatrix_validate()
called by the internal validity checking functions, and also from
getValidity(getClass("symmetricMatrix"))
.
Validity and dimnames
The validity checks do not require a symmetric Dimnames
slot,
so it can be list(NULL, <character>)
, e.g., for efficiency.
However, dimnames()
and other functions and methods
should behave as if the dimnames were symmetric, i.e., with both list
components identical.
See Also
isSymmetric
which has efficient methods
(isSymmetric-methods) for the Matrix classes.
Classes triangularMatrix
, and, e.g.,
dsyMatrix
for numeric dense matrices, or
lsCMatrix
for a logical sparse matrix class.
Examples
## An example about the symmetric Dimnames:
sy <- sparseMatrix(i= c(2,4,3:5), j= c(4,7:5,5), x = 1:5, dims = c(7,7),
symmetric=TRUE, dimnames = list(NULL, letters[1:7]))
sy # shows symmetrical dimnames
sy@Dimnames # internally only one part is stored
dimnames(sy) # both parts - as sy *is* symmetrical
showClass("symmetricMatrix")
## The names of direct subclasses:
scl <- getClass("symmetricMatrix")@subclasses
directly <- sapply(lapply(scl, slot, "by"), length) == 0
names(scl)[directly]
## Methods -- applicaple to all subclasses above:
showMethods(classes = "symmetricMatrix")
Symmetric Part and Skew(symmetric) Part of a Matrix
Description
symmpart(x)
computes the symmetric part (x + t(x))/2
and
skewpart(x)
the
skew symmetric part (x - t(x))/2
of a square matrix x
,
more efficiently for specific Matrix classes.
Note that x == symmpart(x) + skewpart(x)
for all square
matrices – apart from extraneous NA
values in the RHS.
Usage
symmpart(x)
skewpart(x)
Arguments
x |
a square matrix; either “traditional” of class
|
Details
These are generic functions with several methods for different matrix
classes, use e.g., showMethods(symmpart)
to see them.
If the row and column names differ, the result will use the column
names unless they are (partly) NULL
where the row names are
non-NULL
(see also the examples).
Value
symmpart(x)
returns a symmetric matrix,
inheriting from symmetricMatrix
or diagonalMatrix
if x
inherits from Matrix
.
skewpart(x)
returns a skew-symmetric matrix,
inheriting from generalMatrix
,
symmetricMatrix
or
diagonalMatrix
if x
inherits from Matrix
.
See Also
Examples
m <- Matrix(1:4, 2,2)
symmpart(m)
skewpart(m)
stopifnot(all(m == symmpart(m) + skewpart(m)))
dn <- dimnames(m) <- list(row = c("r1", "r2"), col = c("var.1", "var.2"))
stopifnot(all(m == symmpart(m) + skewpart(m)))
colnames(m) <- NULL
stopifnot(all(m == symmpart(m) + skewpart(m)))
dimnames(m) <- unname(dn)
stopifnot(all(m == symmpart(m) + skewpart(m)))
## investigate the current methods:
showMethods(skewpart, include = TRUE)
Virtual Class of Triangular Matrices in Package Matrix
Description
The virtual class of triangular matrices,"triangularMatrix"
,
the package Matrix contains square (nrow ==
ncol
) numeric and logical, dense and sparse matrices, e.g.,
see the examples.
A main use of the virtual class is in methods (and C functions) that
can deal with all triangular matrices.
Slots
uplo
:String (of class
"character"
). Must be either "U", for upper triangular, and "L", for lower triangular.diag
:String (of class
"character"
). Must be either"U"
, for unit triangular (diagonal is all ones), or"N"
for non-unit. The diagonal elements are not accessed internally whendiag
is"U"
. FordenseMatrix
classes, they need to be allocated though, such that the length of thex
slot does not depend ondiag
.Dim
,Dimnames
:The dimension (a length-2
"integer"
) and corresponding names (orNULL
), inherited from theMatrix
, see there.
Extends
Class "Matrix"
, directly.
Methods
There's a C function triangularMatrix_validity()
called by the internal validity checking functions.
Currently, Schur
, isSymmetric
and
as()
(i.e. coerce
) have methods with
triangularMatrix
in their signature.
See Also
isTriangular()
for testing any matrix for triangularity;
classes symmetricMatrix
, and, e.g.,
dtrMatrix
for numeric dense matrices, or
ltCMatrix
for a logical sparse matrix
subclass of "triangularMatrix"
.
Examples
showClass("triangularMatrix")
## The names of direct subclasses:
scl <- getClass("triangularMatrix")@subclasses
directly <- sapply(lapply(scl, slot, "by"), length) == 0
names(scl)[directly]
(m <- matrix(c(5,1,0,3), 2))
as(m, "triangularMatrix")
Class "TsparseMatrix" of Sparse Matrices in Triplet Form
Description
The "TsparseMatrix"
class is the virtual class of
all sparse matrices coded in triplet form. Since it is a virtual class,
no objects may be created from it. See
showClass("TsparseMatrix")
for its subclasses.
Slots
Dim
,Dimnames
:from the
"Matrix"
class,i
:Object of class
"integer"
- the row indices of non-zero entries in 0-base, i.e., must be in0:(nrow(.)-1)
.j
:Object of class
"integer"
- the column indices of non-zero entries. Must be the same length as sloti
and 0-based as well, i.e., in0:(ncol(.)-1)
. For numeric Tsparse matrices,(i,j)
pairs can occur more than once, seedgTMatrix
.
Extends
Class "sparseMatrix"
, directly.
Class "Matrix"
, by class "sparseMatrix"
.
Methods
Extraction ("["
) methods, see
[-methods
.
Note
Most operations with sparse matrices are performed using the
compressed, column-oriented or CsparseMatrix
representation. The triplet representation is convenient for
creating a sparse matrix or for reading and writing such
matrices. Once it is created, however, the matrix is generally
coerced to a CsparseMatrix
for further
operations.
Note that all new(.)
, spMatrix
and
sparseMatrix(*, repr="T")
constructors
for "TsparseMatrix"
classes implicitly add (i.e., “sum up”)
x_k
's that belong to identical (i_k, j_k)
pairs, see, the
example below, or also "dgTMatrix"
.
For convenience, methods for some operations such as %*%
and crossprod
are defined for
TsparseMatrix
objects. These methods simply
coerce the TsparseMatrix
object to a
CsparseMatrix
object then perform the
operation.
See Also
its superclass, sparseMatrix
, and the
dgTMatrix
class, for the links to other classes.
Examples
showClass("TsparseMatrix")
## or just the subclasses' names
names(getClass("TsparseMatrix")@subclasses)
T3 <- spMatrix(3,4, i=c(1,3:1), j=c(2,4:2), x=1:4)
T3 # only 3 non-zero entries, 5 = 1+4 !
Virtual Class "unpackedMatrix"
of Unpacked Dense Matrices
Description
Class "unpackedMatrix"
is the virtual class of dense
matrices in "unpacked" format, storing all m*n
elements of
an m
-by-n
matrix. It is used to define common methods
for efficient subsetting, transposing, etc. of its proper
subclasses: currently "[dln]geMatrix"
(unpacked general),
"[dln]syMatrix"
(unpacked symmetric), "[dln]trMatrix"
(unpacked triangular), and subclasses of these, such as
"dpoMatrix"
.
Slots
Dim
,Dimnames
:as all
Matrix
objects.
Extends
Class "denseMatrix"
, directly.
Class "Matrix"
, by class "denseMatrix"
,
distance 2.
Methods
- pack
signature(x = "unpackedMatrix")
: ...- unpack
signature(x = "unpackedMatrix")
: ...- isSymmetric
signature(object = "unpackedMatrix")
: ...- isTriangular
signature(object = "unpackedMatrix")
: ...- isDiagonal
signature(object = "unpackedMatrix")
: ...- t
signature(x = "unpackedMatrix")
: ...- diag
signature(x = "unpackedMatrix")
: ...- diag<-
signature(x = "unpackedMatrix")
: ...
Author(s)
Mikael Jagan
See Also
pack
and unpack
; its virtual "complement"
"packedMatrix"
; its proper subclasses
"dsyMatrix"
, "ltrMatrix"
, etc.
Examples
showClass("unpackedMatrix")
showMethods(classes = "unpackedMatrix")
Updating and Downdating Sparse Cholesky Factorizations
Description
Computes a rank-k
update or downdate of a sparse Cholesky
factorization
P_{1} A P_{1}' = L_{1} D L_{1}' = L L'
which for some k
-column matrix C
is the factorization
P_{1} (A + s C C') P_{1}' = \tilde{L}_{1} \tilde{D} \tilde{L}_{1}' = \tilde{L} \tilde{L}'
Here, s = 1
for an update and s = -1
for a downdate.
Usage
updown(update, C, L)
Arguments
update |
a logical ( |
C |
a finite matrix or
|
L |
an object of class |
Value
A sparse Cholesky factorization with dimensions matching L
,
typically of class dCHMsimpl
.
Author(s)
Initial implementation by Nicholas Nagle, University of Tennessee.
References
Davis, T. A., Hager, W. W. (2001). Multiple-rank modifications of a sparse Cholesky factorization. SIAM Journal on Matrix Analysis and Applications, 22(4), 997-1013. doi:10.1137/S0895479899357346
See Also
Classes
dCHMsimpl
and dCHMsuper
and their methods, notably for generic function update
,
which is not equivalent to updown(update = TRUE)
.
Generic function Cholesky
.
Examples
m <- sparseMatrix(i = c(3, 1, 3:2, 2:1), p = c(0:2, 4, 4, 6), x = 1:6,
dimnames = list(LETTERS[1:3], letters[1:5]))
uc0 <- Cholesky(A <- crossprod(m) + Diagonal(5))
uc1 <- updown("+", Diagonal(5, 1), uc0)
uc2 <- updown("-", Diagonal(5, 1), uc1)
stopifnot(all.equal(uc0, uc2))
Contiguity Matrix of U.S. Counties
Description
This matrix gives the contiguities of 3111 U.S. counties, using the queen criterion of at least one shared vertex or edge.
Usage
data(USCounties)
Format
A 3111 \times 3111
sparse, symmetric
matrix of class dsCMatrix
, with 9101
nonzero entries.
Source
GAL lattice file ‘usc_q.GAL’
(retrieved in 2008 from
‘http://sal.uiuc.edu/weights/zips/usc.zip’
with permission from Luc Anselin for use and distribution)
was read into R using function read.gal
from package spdep.
Neighbour lists were augmented with row-standardized
(and then symmetrized) spatial weights, using functions
nb2listw
and similar.listw
from packages
spdep and spatialreg.
The resulting listw
object was coerced to class
dsTMatrix
using as_dsTMatrix_listw
from spatialreg,
and subsequently to class dsCMatrix
.
References
Ord, J. K. (1975). Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70(349), 120-126. doi:10.2307/2285387
Examples
data(USCounties, package = "Matrix")
(n <- ncol(USCounties))
I <- .symDiagonal(n)
set.seed(1)
r <- 50L
rho <- 1 / runif(r, 0, 0.5)
system.time(MJ0 <- sapply(rho, function(mult)
determinant(USCounties + mult * I, logarithm = TRUE)$modulus))
## Can be done faster by updating the Cholesky factor:
C1 <- Cholesky(USCounties, Imult = 2)
system.time(MJ1 <- sapply(rho, function(mult)
determinant(update(C1, USCounties, mult), sqrt = FALSE)$modulus))
stopifnot(all.equal(MJ0, MJ1))
C2 <- Cholesky(USCounties, super = TRUE, Imult = 2)
system.time(MJ2 <- sapply(rho, function(mult)
determinant(update(C2, USCounties, mult), sqrt = FALSE)$modulus))
stopifnot(all.equal(MJ0, MJ2))
Contiguity Matrix of World One-Degree Grid Cells
Description
This matrix gives the contiguities of 15260 one-degree grid cells of world land areas, using a criterion based on the great-circle distance between centers.
Usage
data(wrld_1deg)
Format
A 15260 \times 15260
sparse, symmetric
matrix of class dsCMatrix
, with 55973
nonzero entries.
Source
Shoreline data were read into R from the GSHHS database
using function Rgshhs
from package maptools.
Antarctica was excluded. An approximately one-degree grid
was generated using function Sobj_SpatialGrid
, also
from maptools. Grid cells with centers on land
were identified using the over
method for classes
SpatialPolygons
and SpatialGrid
, defined in
package sp. Neighbours of these were identified
by passing the resulting SpatialPixels
object to
function dnearneigh
from package spdep,
using as a cut-off a great-circle distance of sqrt(2)
kilometers between centers.
Neighbour lists were augmented with row-standardized
(and then symmetrized) spatial weights, using functions
nb2listw
and similar.listw
from packages
spdep and spatialreg.
The resulting listw
object was coerced to class
dsTMatrix
using as_dsTMatrix_listw
from spatialreg,
and subsequently to class dsCMatrix
.
References
Ord, J. K. (1975). Estimation methods for models of spatial interaction. Journal of the American Statistical Association, 70(349), 120-126. doi:10.2307/2285387
Examples
data(wrld_1deg, package = "Matrix")
(n <- ncol(wrld_1deg))
I <- .symDiagonal(n)
doExtras <- interactive() || nzchar(Sys.getenv("R_MATRIX_CHECK_EXTRA"))
set.seed(1)
r <- if(doExtras) 20L else 3L
rho <- 1 / runif(r, 0, 0.5)
system.time(MJ0 <- sapply(rho, function(mult)
determinant(wrld_1deg + mult * I, logarithm = TRUE)$modulus))
## Can be done faster by updating the Cholesky factor:
C1 <- Cholesky(wrld_1deg, Imult = 2)
system.time(MJ1 <- sapply(rho, function(mult)
determinant(update(C1, wrld_1deg, mult), sqrt = FALSE)$modulus))
stopifnot(all.equal(MJ0, MJ1))
C2 <- Cholesky(wrld_1deg, super = TRUE, Imult = 2)
system.time(MJ2 <- sapply(rho, function(mult)
determinant(update(C2, wrld_1deg, mult), sqrt = FALSE)$modulus))
stopifnot(all.equal(MJ0, MJ2))