Type: | Package |
Title: | The Variational Bayesian Method for Sparse PCA |
Version: | 0.1.0 |
Author: | Bo (Yu-Chien) Ning |
Maintainer: | Bo (Yu-Chien) Ning <bo.ning@upmc.fr> |
Description: | Contains functions for a variational Bayesian method for sparse PCA proposed by Ning (2020) <doi:10.48550/arXiv.2102.00305>. There are two algorithms: the PX-CAVI algorithm (if assuming the loadings matrix is jointly row-sparse) and the batch PX-CAVI algorithm (if without this assumption). The outputs of the main function, VBsparsePCA(), include the mean and covariance of the loadings matrix, the score functions, the variable selection results, and the estimated variance of the random noise. |
Depends: | R (≥ 3.6.0) |
License: | GPL-3 |
Imports: | MASS, pracma, stats, utils |
Encoding: | UTF-8 |
LazyData: | true |
RoxygenNote: | 7.1.1 |
NeedsCompilation: | no |
Packaged: | 2021-02-08 22:40:14 UTC; poning |
Repository: | CRAN |
Date/Publication: | 2021-02-12 09:50:16 UTC |
The function for obtaining the mean of a folded normal distribution
Description
This function calculates the mean of the folded normal distribution given its location and scale parameters.
Usage
foldednorm.mean(mean, var)
Arguments
mean |
Location parameter of the folded normal distribution. |
var |
Scale parameter of the folded normal distribution. |
Details
The mean of the folded normal distribution with location \mu
and scale \sigma^2
is
\sigma \sqrt{2/\pi} \exp(-\mu^2/(2\sigma^2)) + \mu (1-2\Phi(-\mu/\sigma))
.
Value
foldednorm.mean |
The mean of the folded normal distribution of iterations to reach convergence. |
Examples
#Calculates the mean of the folded normal distribution with mean 0 and var 1
mean <- foldednorm.mean(0, 1)
print(mean)
Function for the PX-CAVI algorithm using the Laplace slab
Description
This function employs the PX-CAVI algorithm proposed in Ning (2020).
The g
in the slab density of the spike and slab prior is chosen to be the Laplace density, i.e.,
N(0, \sigma^2/\lambda_1 I_r)
.
Details of the model and the prior can be found in the Details section in the description of the 'VBsparsePCA()' function.
This function is not capable of handling the case when r > 1. In that case, we recommend to use the multivariate distribution instead.
Usage
spca.cavi.Laplace(
x,
r = 1,
lambda = 1,
max.iter = 100,
eps = 0.001,
sig2.true = NA,
threshold = 0.5,
theta.int = NA,
theta.var.int = NA,
kappa.para1 = NA,
kappa.para2 = NA,
sigma.a = NA,
sigma.b = NA
)
Arguments
x |
Data an |
r |
Rank. |
lambda |
Tuning parameter for the density |
max.iter |
The maximum number of iterations for running the algorithm. |
eps |
The convergence threshold; the default is |
sig2.true |
The default is false, |
threshold |
The threshold to determine whether |
theta.int |
The initial value of theta mean; if not provided, the algorithm will estimate it using PCA. |
theta.var.int |
The initial value of theta.var; if not provided, the algorithm will set it to be 1e-3*diag(r). |
kappa.para1 |
The value of |
kappa.para2 |
The value of |
sigma.a |
The value of |
sigma.b |
The value of |
Value
iter |
The number of iterations to reach convergence. |
selection |
A vector (if |
theta.mean |
The loadings matrix. |
theta.var |
The covariance of each non-zero rows in the loadings matrix. |
sig2 |
Variance of the noise. |
obj.fn |
A vector contains the value of the objective function of each iteration. It can be used to check whether the algorithm converges |
Examples
#In this example, the first 20 rows in the loadings matrix are nonzero, the rank is 1
set.seed(2021)
library(MASS)
library(pracma)
n <- 200
p <- 1000
s <- 20
r <- 1
sig2 <- 0.1
# generate eigenvectors
U.s <- randortho(s, type = c("orthonormal"))
U <- rep(0, p)
U[1:s] <- as.vector(U.s[, 1:r])
s.star <- rep(0, p)
s.star[1:s] <- 1
eigenvalue <- seq(20, 10, length.out = r)
# generate Sigma
theta.true <- U * sqrt(eigenvalue)
Sigma <- tcrossprod(theta.true) + sig2*diag(p)
# generate n*p dataset
X <- t(mvrnorm(n, mu = rep(0, p), Sigma = Sigma))
result <- spca.cavi.Laplace(x = X, r = 1)
loadings <- result$theta.mean
Function for the PX-CAVI algorithm using the multivariate normal slab
Description
This function employs the PX-CAVI algorithm proposed in Ning (2020).
The g
in the slab density of the spike and slab prior is chosen to be the multivariate normal distribution, i.e.,
N(0, \sigma^2/\lambda_1 I_r)
.
Details of the model and the prior can be found in the Details section in the description of the 'VBsparsePCA()' function.
Usage
spca.cavi.mvn(
x,
r,
lambda = 1,
max.iter = 100,
eps = 1e-04,
jointly.row.sparse = TRUE,
sig2.true = NA,
threshold = 0.5,
theta.int = NA,
theta.var.int = NA,
kappa.para1 = NA,
kappa.para2 = NA,
sigma.a = NA,
sigma.b = NA
)
Arguments
x |
Data an |
r |
Rank. |
lambda |
Tuning parameter for the density |
max.iter |
The maximum number of iterations for running the algorithm. |
eps |
The convergence threshold; the default is |
jointly.row.sparse |
The default is true, which means that the jointly row sparsity assumption is used; one could not use this assumptio by changing it to false. |
sig2.true |
The default is false, |
threshold |
The threshold to determine whether |
theta.int |
The initial value of theta mean; if not provided, the algorithm will estimate it using PCA. |
theta.var.int |
The initial value of theta.var; if not provided, the algorithm will set it to be 1e-3*diag(r). |
kappa.para1 |
The value of |
kappa.para2 |
The value of |
sigma.a |
The value of |
sigma.b |
The value of |
Value
iter |
The number of iterations to reach convergence. |
selection |
A vector (if |
theta.mean |
The loadings matrix. |
theta.var |
The covariance of each non-zero rows in the loadings matrix. |
sig2 |
Variance of the noise. |
obj.fn |
A vector contains the value of the objective function of each iteration. It can be used to check whether the algorithm converges |
Examples
#In this example, the first 20 rows in the loadings matrix are nonzero, the rank is 1
set.seed(2021)
library(MASS)
library(pracma)
n <- 200
p <- 1000
s <- 20
r <- 1
sig2 <- 0.1
# generate eigenvectors
U.s <- randortho(s, type = c("orthonormal"))
U <- rep(0, p)
U[1:s] <- as.vector(U.s[, 1:r])
s.star <- rep(0, p)
s.star[1:s] <- 1
eigenvalue <- seq(20, 10, length.out = r)
# generate Sigma
theta.true <- U * sqrt(eigenvalue)
Sigma <- tcrossprod(theta.true) + sig2*diag(p)
# generate n*p dataset
X <- t(mvrnorm(n, mu = rep(0, p), Sigma = Sigma))
result <- spca.cavi.mvn(x = X, r = 1)
loadings <- result$theta.mean
The main function for the variational Bayesian method for sparse PCA
Description
This function employs the PX-CAVI algorithm proposed in Ning (2021). The method uses the sparse spiked-covariance model and the spike and slab prior (see below). Two different slab densities can be used: independent Laplace densities and a multivariate normal density. In Ning (2021), it recommends choosing the multivariate normal distribution. The algorithm allows the user to decide whether she/he wants to center and scale their data. The user is also allowed to change the default values of the parameters of each prior.
Usage
VBsparsePCA(
dat,
r,
lambda = 1,
slab.prior = "MVN",
max.iter = 100,
eps = 0.001,
jointly.row.sparse = TRUE,
center.scale = FALSE,
sig2.true = NA,
threshold = 0.5,
theta.int = NA,
theta.var.int = NA,
kappa.para1 = NA,
kappa.para2 = NA,
sigma.a = NA,
sigma.b = NA
)
Arguments
dat |
Data an |
r |
Rank. |
lambda |
Tuning parameter for the density |
slab.prior |
The density |
max.iter |
The maximum number of iterations for running the algorithm. |
eps |
The convergence threshold; the default is |
jointly.row.sparse |
The default is true, which means that the jointly row sparsity assumption is used; one could not use this assumptio by changing it to false. |
center.scale |
The default if false. If true, then the input date will be centered and scaled. |
sig2.true |
The default is false, |
threshold |
The threshold to determine whether |
theta.int |
The initial value of theta mean; if not provided, the algorithm will estimate it using PCA. |
theta.var.int |
The initial value of theta.var; if not provided, the algorithm will set it to be 1e-3*diag(r). |
kappa.para1 |
The value of |
kappa.para2 |
The value of |
sigma.a |
The value of |
sigma.b |
The value of |
Details
The model is
X_i = \theta w_i + \sigma \epsilon_i
where w_i \sim N(0, I_r), \epsilon \sim N(0,I_p)
.
The spike and slab prior is given by
\pi(\theta, \boldsymbol \gamma|\lambda_1, r) \propto \prod_{j=1}^p \left(\gamma_j \int_{A \in V_{r,r}} g(\theta_j|\lambda_1, A, r) \pi(A) d A+ (1-\gamma_j) \delta_0(\theta_j)\right)
g(\theta_j|\lambda_1, A, r) = C(\lambda_1)^r \exp(-\lambda_1 \|\beta_j\|_q^m)
\gamma_j| \kappa \sim Bernoulli(\kappa)
\kappa \sim Beta(\alpha_1, \alpha_2)
\sigma^2 \sim InvGamma(\sigma_a, \sigma_b)
where V_{r,r} = \{A \in R^{r \times r}: A'A = I_r\}
and \delta_0
is the Dirac measure at zero.
The density g
can be chosen to be the product of independent Laplace distribution (i.e., q = 1, m =1
) or the multivariate normal distribution (i.e., q = 2, m = 2
).
Value
iter |
The number of iterations to reach convergence. |
selection |
A vector (if |
loadings |
The loadings matrix. |
uncertainty |
The covariance of each non-zero rows in the loadings matrix. |
scores |
Score functions for the |
sig2 |
Variance of the noise. |
obj.fn |
A vector contains the value of the objective function of each iteration. It can be used to check whether the algorithm converges |
References
Ning, B. (2021). Spike and slab Bayesian sparse principal component analysis. arXiv:2102.00305.
Examples
#In this example, the first 20 rows in the loadings matrix are nonzero, the rank is 2
set.seed(2021)
library(MASS)
library(pracma)
n <- 200
p <- 1000
s <- 20
r <- 2
sig2 <- 0.1
# generate eigenvectors
U.s <- randortho(s, type = c("orthonormal"))
if (r == 1) {
U <- rep(0, p)
U[1:s] <- as.vector(U.s[, 1:r])
} else {
U <- matrix(0, p, r)
U[1:s, ] <- U.s[, 1:r]
}
s.star <- rep(0, p)
s.star[1:s] <- 1
eigenvalue <- seq(20, 10, length.out = r)
# generate Sigma
if (r == 1) {
theta.true <- U * sqrt(eigenvalue)
Sigma <- tcrossprod(theta.true) + sig2*diag(p)
} else {
theta.true <- U %*% sqrt(diag(eigenvalue))
Sigma <- tcrossprod(theta.true) + sig2 * diag(p)
}
# generate n*p dataset
X <- t(mvrnorm(n, mu = rep(0, p), Sigma = Sigma))
result <- VBsparsePCA(dat = t(X), r = 2, jointly.row.sparse = TRUE, center.scale = FALSE)
loadings <- result$loadings
scores <- result$scores