Version: | 0.7-5 |
Date: | 2024-08-23 |
Title: | Multiple Precision Arithmetic |
Maintainer: | Antoine Lucas <antoinelucas@gmail.com> |
Description: | Multiple Precision Arithmetic (big integers and rationals, prime number tests, matrix computation), "arithmetic without limitations" using the C library GMP (GNU Multiple Precision Arithmetic). |
Depends: | R (≥ 3.5.0) |
Imports: | methods |
Suggests: | Rmpfr, MASS, round |
SystemRequirements: | gmp (>= 4.2.3) |
License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
BuildResaveData: | no |
LazyDataNote: | not available, as we use data/*.R *and* our classes |
NeedsCompilation: | yes |
URL: | https://forgemia.inra.fr/sylvain.jasson/gmp |
Packaged: | 2024-08-23 17:22:31 UTC; antoine |
Author: | Antoine Lucas |
Repository: | CRAN |
Date/Publication: | 2024-08-23 18:40:02 UTC |
Apply Functions Over Matrix Margins (Rows or Columns)
Description
These are S3 methods
for apply()
which we
re-export as S3 generic function.
They “overload” the apply()
function for big rationals ("bigq"
)
and big integers ("bigz"
).
Usage
## S3 method for class 'bigz'
apply(X, MARGIN, FUN, ...)
## S3 method for class 'bigq'
apply(X, MARGIN, FUN, ...)
Arguments
X |
a matrix of class bigz or bigq, see e.g.,
|
MARGIN |
1: apply function to rows; 2: apply function to columns |
FUN |
|
... |
(optional) extra arguments for |
Value
The bigz
and bigq
methods return a vector of class
"bigz"
or "bigq"
, respectively.
Author(s)
Antoine Lucas
See Also
apply
; lapply
is used by our
apply()
method.
Examples
x <- as.bigz(matrix(1:12,3))
apply(x,1,min)
apply(x,2,max)
x <- as.bigq(x ^ 3, d = (x + 3)^2)
apply(x,1, min)
apply(x,2, sum)
## now use the "..." to pass na.rm=TRUE :
x[2,3] <- NA
apply(x,1, sum)
apply(x,1, sum, na.rm = TRUE)
Coerce to 'numeric', not Loosing Dimensions
Description
a number-like object is coerced to type (typeof)
"numeric"
, keeping dim
(and maybe
dimnames
) when present.
Usage
asNumeric(x)
Arguments
x |
a “number-like” object, e.g., big integer
( |
Value
an R object of type (typeof
) "numeric"
, a matrix
or array
if x
had non-NULL dimension dim()
.
Methods
signature(x = "ANY")
the default method, which is the identity for
numeric
array.signature(x = "bigq")
the method for big rationals.
signature(x = "bigq")
the method for big integers.
Note that package Rmpfr provides methods for its own number-like objects.
Author(s)
Martin Maechler
See Also
as.numeric
coerces to both "numeric"
and to a
vector
, whereas asNumeric()
should keep
dim
(and other) attributes.
Examples
m <- matrix(1:6, 2,3)
stopifnot(identical(m, asNumeric(m)))# remains matrix
(M <- as.bigz(m) / 5) ##-> "bigq" matrix
asNumeric(M) # numeric matrix
stopifnot(all.equal(asNumeric(M), m/5))
Exact Bernoulli Numbers
Description
Return the n
-th Bernoulli number B_n
, (or B_n^+
,
see the reference), where B_1 = + \frac 1 2
.
Usage
BernoulliQ(n, verbose = getOption("verbose", FALSE))
Arguments
n |
integer vector, |
verbose |
logical indicating if computation should be traced. |
Value
a big rational (class "bigq"
) vector of the
Bernoulli numbers B_n
.
Author(s)
Martin Maechler
References
https://en.wikipedia.org/wiki/Bernoulli_number
See Also
Bernoulli
in Rmpfr in arbitrary precision
via Riemann's \zeta
function.
Bern(n)
in DPQ uses standard (double precision)
R arithmetic for the n-th Bernoulli number.
Examples
(Bn0.10 <- BernoulliQ(0:10))
Large sized rationals
Description
Class "bigq"
encodes rationals encoded as ratios of arbitrary
large integers (via GMP).
A simple S3 class (internally a raw
vector), it has been
registered as formal (S4) class (via setOldClass
), too.
Usage
as.bigq(n, d = 1)
## S3 method for class 'bigq'
as.character(x, b=10,...)
## S3 method for class 'bigq'
as.double(x,...)
as.bigz.bigq(a, mod=NA)
is.bigq(x)
## S3 method for class 'bigq'
is.na(x)
## S3 method for class 'bigq'
print(x, quote=FALSE, initLine = TRUE, ...)
denominator(x)
numerator(x)
NA_bigq_
c_bigq(L)
Arguments
n , d |
either integer, numeric or string value
(String value: either starting with |
a |
an element of class |
mod |
optional modulus to convert into biginteger |
x |
a “rational number” (vector), of class |
b |
base: from 2 to 36 |
... |
additional arguments passed to methods |
quote |
(for printing:) logical indicating if the numbers
should be quoted (as characters are); the default used to be
|
initLine |
(for printing:) logical indicating if an initial line (with the class and length or dimension) should be printed. |
L |
a |
Details
as.bigq(x)
when x
is numeric
(aka
double
precision) calls the ‘GMP’ function
mpq_set_d()
which is documented to be exact (every finite double
precision number is a rational number).
as.bigz.bigq()
returns the smallest integers not less than the
corresponding rationals bigq.
NA_bigq_
is computed on package load time as as.bigq(NA)
.
Value
An R object of (S3) class "bigq"
representing the parameter value.
Author(s)
Antoine Lucas
Examples
x <- as.bigq(21,6)
x
# 7 / 2
# Wow ! result is simplified.
y <- as.bigq(5,3)
# addition works !
x + y
# You can even try multiplication, division...
x * y / 13
# and, since May 2012,
x ^ 20
stopifnot(is.bigq(x), is.bigq(x + y),
x ^ 20 == as.bigz(7)^20 / 2^20)
# convert to string, double
as.character(x)
as.double(x)
stopifnot( is.na(NA_bigq_) )
# Depict the "S4-class" bigq, i.e., the formal (S4) methods:
if(require("Rmpfr")) # mostly interesting there
showMethods(class="bigq")
# an sapply() version that works for big rationals "bigq":
sapplyQ <- function(X, FUN, ...) c_bigq(lapply(X, FUN, ...))
# dummy example showing it works (here):
qq <- as.bigq(1, 1:999)
q1 <- sapplyQ(qq, function(q) q^2)
stopifnot( identical(q1, qq^2) )
Relational Operators
Description
Binary operators which allow the comparison of values in atomic vectors.
Usage
## S3 method for class 'bigq'
sign(x)
## S3 method for class 'bigq'
e1 < e2
## S3 method for class 'bigq'
e1 <= e2
## S3 method for class 'bigq'
e1 == e2
## S3 method for class 'bigq'
e1 >= e2
## S3 method for class 'bigq'
e1 > e2
## S3 method for class 'bigq'
e1 != e2
Arguments
x , e1 , e2 |
Object or vector of class |
Examples
x <- as.bigq(8000,21)
x < 2 * x
Basic arithmetic operators for large rationals
Description
Addition, subtraction, multiplication, division, and absolute value for
large rationals, i.e. "bigq"
class R objects.
Usage
add.bigq(e1, e2)
## S3 method for class 'bigq'
e1 + e2
sub.bigq(e1, e2=NULL)
## S3 method for class 'bigq'
e1 - e2
mul.bigq(e1, e2)
## S3 method for class 'bigq'
e1 * e2
div.bigq(e1, e2)
## S3 method for class 'bigq'
e1 / e2
## S3 method for class 'bigq'
e1 ^ e2
## S3 method for class 'bigq'
abs(x)
Arguments
e1 , e2 , x |
of class |
Details
Operators can be use directly when the objects are of class "bigq"
:
a + b, a * b, etc, and a ^ n
, where n
must be coercable
to a biginteger ("bigz"
).
Value
A bigq class representing the result of the arithmetic operation.
Author(s)
Immanuel Scholz and Antoine Lucas
Examples
## 1/3 + 1 = 4/3 :
as.bigq(1,3) + 1
r <- as.bigq(12, 47)
stopifnot(r ^ 3 == r*r*r)
Large Sized Integer Values
Description
Class "bigz"
encodes arbitrarily large integers (via GMP).
A simple S3 class (internally a raw
vector), it has been
registered as formal (S4) class (via setOldClass
), too.
Usage
as.bigz(a, mod = NA)
NA_bigz_
## S3 method for class 'bigz'
as.character(x, b = 10, ...)
is.bigz(x)
## S3 method for class 'bigz'
is.na(x)
## S3 method for class 'bigz'
print(x, quote=FALSE, initLine = is.null(modulus(x)), ...)
c_bigz(L)
Arguments
a |
either If character: the strings either start with |
b |
base: from 2 to 36 |
x |
a “big integer number” (vector), of class |
... |
additional arguments passed to methods |
mod |
an integer, numeric, string or bigz of the internal modulus, see below. |
quote |
(for printing:) logical indicating if the numbers
should be quoted (as characters are); the default used to be
|
initLine |
(for printing:) logical indicating if an initial line (with the class and length or dimension) should be printed. The default prints it for those cases where the class is not easily discernable from the print output. |
L |
a |
Details
Bigz's are integers of arbitrary, but given length (means: only restricted by the host memory). Basic arithmetic operations can be performed on bigzs as addition, subtraction, multiplication, division, modulation (remainder of division), power, multiplicative inverse, calculating of the greatest common divisor, test whether the integer is prime and other operations needed when performing standard cryptographic operations.
For a review of basic arithmetics, see add.bigz
.
Comparison are supported, i.e., "=="
, "!="
,
"<"
, "<="
, ">"
, and ">="
.
NA_bigz_
is computed on package load time as as.bigz(NA)
.
Objects of class "bigz"
may have a “modulus”, accessible
via modulus()
, currently as an attribute mod
.
When the object has such a modulus m
, arithmetic is performed
“modulo m”, mathematically “within the
ring Z/mZ
”. For many operations, this means
result <- mod.bigz(result, m) ## == result %% m
is called after performing the arithmetic operation and the result
will have the attribute mod
set accordingly.
This however does not apply, e.g., for /
, where
a / b := a b^{-1}
and
b^{-1}
is the multiplicate inverse of b
with respect to ring arithmetic, or NA
with a warning
when the inverse does not exist. The warning can be turned off via
options("gmp:warnModMismatch" = FALSE)
Powers of bigzs can only be performed, if either a modulus is going to
be applied to the result bigz or if the exponent fits into an integer
value. So, if you want to calculate a power in a finite group
(“modulo c”), for large c
do not use
a ^ b %% c
, but rather as.bigz(a,c) ^ b
.
The following rules for the result's modulus apply when performing
arithmetic operations on bigz
s:
If none of the operand has a modulus set, the result will not have a modulus.
If both operands have a different modulus, the result will not have a modulus, except in case of
mod.bigz
, where the second operand's value is used.If only one of the operands has a modulus or both have a common (the same), it is set and used for the arithmetic operations, except in case of
mod.bigz
, where the second operand's value is used.
Value
An R object of (S3) class "bigz"
, representing the argument
(x
or a
).
Note
x <- as.bigz(1234567890123456789012345678901234567890)
will not work as R converts the number to a double, losing precision
and only then convert to a "bigz"
object.
Instead, use the syntax
x <- as.bigz("1234567890123456789012345678901234567890")
Author(s)
Immanuel Scholz
References
The GNU MP Library, see https://gmplib.org
Examples
## 1+1=2
a <- as.bigz(1)
a + a
## Two non-small Mersenne primes:
two <- as.bigz(2)
p1 <- two^107 -1 ; isprime(p1); p1
p2 <- two^127 -1 ; isprime(p2); p2
stopifnot( is.na(NA_bigz_) )
## Calculate c = x^e mod n
## --------------------------------------------------------------------
x <- as.bigz("0x123456789abcdef") # my secret message
e <- as.bigz(3) # something smelling like a dangerous public RSA exponent
(n <- p1 * p2) # a product of two primes
as.character(n, b=16)# as both primes were Mersenne's..
## recreate the three numbers above [for demo below]:
n. <- n; x. <- x; e. <- e # save
Rev <- function() { n <<- n.; x <<- x.; e <<- e.}
# first way to do it right
modulus(x) <- n
c <- x ^ e ; c ; Rev()
# similar second way (makes more sense if you reuse e) to do it right
modulus(e) <- n
c2 <- x ^ e
stopifnot(identical(c2, c), is.bigz(c2)) ; Rev()
# third way to do it right
c3 <- x ^ as.bigz(e, n) ; stopifnot(identical(c3, c))
# fourth way to do it right
c4 <- as.bigz(x, n) ^ e ; stopifnot(identical(c4, c))
# WRONG! (although very beautiful. Ok only for very small 'e' as here)
cc <- x ^ e %% n
cc == c
# Return result in hexa
as.character(c, b=16)
# Depict the "S4-class" bigz, i.e., the formal (S4) methods:
if(require("Rmpfr")) # mostly interesting there
showMethods(class="bigz")
# an sapply() version that works for big integers "bigz":
sapplyZ <- function(X, FUN, ...) c_bigz(lapply(X, FUN, ...))
# dummy example showing it works (here):
zz <- as.bigz(3)^(1000+ 1:999)
z1 <- sapplyZ(zz, function(z) z^2)
stopifnot( identical(z1, zz^2) )
Basic Arithmetic Operators for Large Integers ("bigz")
Description
Addition, substraction, multiplication, (integer) division, remainder of division, multiplicative inverse, power and logarithm functions.
Usage
add.bigz(e1, e2)
sub.bigz(e1, e2 = NULL)
mul.bigz(e1, e2)
div.bigz(e1, e2)
divq.bigz(e1,e2) ## == e1 %/% e2
mod.bigz(e1, e2) ## == e1 %% e2
## S3 method for class 'bigz'
abs(x)
inv.bigz(a, b,...)## == (1 / a) (modulo b)
pow.bigz(e1, e2,...)## == e1 ^ e2
## S3 method for class 'bigz'
log(x, base=exp(1))
## S3 method for class 'bigz'
log2(x)
## S3 method for class 'bigz'
log10(x)
Arguments
x |
bigz, integer or string from an integer |
e1 , e2 , a , b |
bigz, integer or string from an integer |
base |
base of the logarithm; base e as default |
... |
Additional parameters |
Details
Operators can be used directly when objects are of class bigz: a + b, log(a), etc.
For details about the internal modulus state, and the rules
applied for arithmetic operations on big integers with a modulus,
see the bigz
help page.
a / b
=
div(a,b)
returns a rational number
unless the operands have a (matching) modulus where
a * b^-1
results.
a %/% b
(or, equivalently, divq(a,b)
) returns the
quotient of simple integer division (with truncation towards zero),
possibly re-adding a modulus at the end (but not using a
modulus like in a / b
).
r <- inv.bigz(a, m)
, the multiplicative inverse of
a
modulo m
, corresponds to 1/a
or a ^-1
from above when a
has modulus m
. Note that
a
not always has an inverse modulo m
, in which case
r
will be NA
with a warning that can be turned
off via
options("gmp:warnNoInv" = FALSE)
.
Value
Apart from /
(or div
), where rational numbers
(bigq
) may result, these functions return an object of
class "bigz"
, representing the result of the arithmetic
operation.
Author(s)
Immanuel Scholz and Antoine Lucas
References
The GNU MP Library, see https://gmplib.org
Examples
# 1+1=2
as.bigz(1) + 1
as.bigz(2)^10
as.bigz(2)^200
# if my.large.num.string is set to a number, this returns the least byte
(my.large.num.string <- paste(sample(0:9, 200, replace=TRUE), collapse=""))
mod.bigz(as.bigz(my.large.num.string), "0xff")
# power exponents can be up to MAX_INT in size, or unlimited if a
# bigz's modulus is set.
pow.bigz(10,10000)
## Modulo 11, 7 and 8 are inverses :
as.bigz(7, mod = 11) * 8 ## ==> 1 (mod 11)
inv.bigz(7, 11)## hence, 8
a <- 1:10
(i.a <- inv.bigz(a, 11))
d <- as.bigz(7)
a %/% d # = divq(a, d)
a %% d # = mod.bigz (a, d)
(ii <- inv.bigz(1:10, 16))
## with 5 warnings (one for each NA)
op <- options("gmp:warnNoInv" = FALSE)
i2 <- inv.bigz(1:10, 16) # no warnings
(i3 <- 1 / as.bigz(1:10, 16))
i4 <- as.bigz(1:10, 16) ^ -1
stopifnot(identical(ii, i2),
identical(as.bigz(i2, 16), i3),
identical(i3, i4))
options(op)# revert previous options' settings
stopifnot(inv.bigz(7, 11) == 8,
all(as.bigz(i.a, 11) * a == 1),
identical(a %/% d, divq.bigz(1:10, 7)),
identical(a %% d, mod.bigz (a, d))
)
Exact Rational Binomial Probabilities
Description
Compute exact binomial probabilities using (big integer and) big rational arithmetic.
Usage
dbinomQ(x, size, prob, log = FALSE)
Arguments
x , size |
integer or big integer ( |
prob |
the probability; should be big rational
( |
log |
logical; must be |
Value
a big rational ("bigq"
) of the length
of
(recycled) x+size+prob
.
Author(s)
Martin Maechler
See Also
chooseZ
; R's (stats package) dbinom()
.
Examples
dbinomQ(0:8,8, as.bigq(1,2))
## 1/256 1/32 7/64 7/32 35/128 7/32 7/64 1/32 1/256
ph16. <- dbinomQ(0:16, size=16, prob = 1/2) # innocous warning
ph16 <- dbinomQ(0:16, size=16, prob = as.bigq(1,2))
ph16.75 <- dbinomQ(0:16, size=16, prob = as.bigq(3,4))
ph8.75 <- dbinomQ(0:8, 8, as.bigq(3,4))
stopifnot(exprs = {
dbinomQ(0:8,8, as.bigq(1,2)) * 2^8 == choose(8, 0:8)
identical(ph8.75, chooseZ(8,0:8) * 3^(0:8) / 4^8)
all.equal(ph8.75, choose (8,0:8) * 3^(0:8) / 4^8, tol=1e-15) # see exactly equal
identical(ph16, ph16.)
identical(ph16,
dbinomQ(0:16, size=16, prob = as.bigz(1)/2))
all.equal(dbinom(0:16, 16, prob=1/2), asNumeric(ph16), tol=1e-15)
all.equal(dbinom(0:16, 16, prob=3/4), asNumeric(ph16.75), tol=1e-15)
})
(Cumulative) Sums, Products of Large Integers and Rationals
Description
Theses are methods to ‘overload’ the sum()
,
cumsum()
and prod()
functions for big
rationals and big integers.
Usage
## S3 method for class 'bigz'
cumsum(x)
## S3 method for class 'bigq'
cumsum(x)
## S3 method for class 'bigz'
sum(..., na.rm = FALSE)
## S3 method for class 'bigq'
sum(..., na.rm = FALSE)
## S3 method for class 'bigz'
prod(..., na.rm = FALSE)
## S3 method for class 'bigq'
prod(..., na.rm = FALSE)
Arguments
x , ... |
R objects of class |
na.rm |
logical indicating if missing values ( |
Value
return an element of class bigz or bigq.
Author(s)
Antoine Lucas
See Also
Examples
x <- as.bigz(1:12)
cumsum(x)
prod(x)
sum(x)
x <- as.bigq(1:12)
cumsum(x)
prod(x)
sum(x)
Extract or Replace Parts of a 'bigz' or 'bigq' Object
Description
Operators acting on vectors, arrays and lists to extract or replace subsets.
Usage
## S3 method for class 'bigz'
x[i=NULL, j=NULL, drop = TRUE]
## S3 method for class 'bigq'
x[i=NULL, j=NULL, drop = TRUE]
##___ In the following, only the bigq method is mentioned (but 'bigz' is "the same"): ___
## S3 method for class 'bigq'
c(..., recursive = FALSE)
## S3 method for class 'bigq'
rep(x, times=1, length.out=NA, each=1, ...)
Arguments
x |
R object of class |
... |
further arguments, notably for |
i , j |
indices, see standard R subsetting and subassignment. |
drop |
logical, unused here, i.e., matrix subsetting always returns a matrix, here! |
times , length.out , each |
integer; typically only one is
specified; for more see |
recursive |
from |
Examples
a <- as.bigz(123)
## indexing "outside" --> extends the vectors (filling with NA)
a[2] <- a[1]
a[4] <- -4
## create a vector of 3 a
c(a,a,a)
## repeate a 5 times
rep(a,5)
## with matrix: 3 x 2
m <- matrix.bigz(1:6,3)
m[1,] # the first row
m[1,, drop=TRUE] # the same: drop does *not* drop
m[1]
m[-c(2,3),]
m[-c(2,3)]
m[c(TRUE,FALSE,FALSE)]
##_modification on matrix
m[2,-1] <- 11
Extrema (Maxima and Minima)
Description
We provide S3 methods
for min
and
max
for big rationals (bigq
) and big integers
(biqz
); consequently, range()
works as well.
Similarly, S4 methods are provided for which.min()
and
which.max()
.
Usage
## S3 method for class 'bigz'
max(..., na.rm=FALSE)
## S3 method for class 'bigq'
max(..., na.rm=FALSE)
## S3 method for class 'bigz'
min(..., na.rm=FALSE)
## S3 method for class 'bigq'
min(..., na.rm=FALSE)
## S4 method for signature 'bigz'
which.min(x)
## S4 method for signature 'bigq'
which.max(x)
Arguments
x |
a “big integer” ( |
... |
numeric arguments |
na.rm |
a logical indicating whether missing values should be removed. |
Value
an object of class "bigz"
or "bigq"
.
Author(s)
Antoine Lucas
See Also
max
etc in base.
Examples
x <- as.bigz(1:10)
max(x)
min(x)
range(x) # works correctly via default method
x <- x[c(7:10,6:3,1:2)]
which.min(x) ## 9
which.max(x) ## 4
Q <- as.bigq(1:10, 3)
max(Q)
min(Q)
(Q <- Q[c(6:3, 7:10,1:2)])
stopifnot(which.min(Q) == which.min(asNumeric(Q)),
which.max(Q) == which.max(asNumeric(Q)))
stopifnot(range(x) == c(1,10), 3*range(Q) == c(1,10))
Factorial and Binomial Coefficient as Big Integer
Description
Efficiently compute the factorial n!
or a binomial coefficient
{n\choose k}
as big integer (class bigz
).
Usage
factorialZ(n)
chooseZ(n, k)
Arguments
n |
non-negative integer (vector), for
|
k |
non-negative integer vector. |
Value
a vector of big integers, i.e., of class bigz
.
See Also
factorial
and gamma
in base R;
Examples
factorialZ(0:10)# 1 1 2 6 ... 3628800
factorialZ(0:40)# larger
factorialZ(200)
n <- 1000
f1000 <- factorialZ(n)
stopifnot(1e-15 > abs(as.numeric(1 - lfactorial(n)/log(f1000))))
system.time(replicate(8, f1e4 <<- factorialZ(10000)))
nchar(as.character(f1e4))# 35660 ... (too many to even look at ..)
chooseZ(1000, 100:102)# vectorizes
chooseZ(as.bigz(2)^120, 10)
n <- c(50,80,100)
k <- c(20,30,40)
## currently with an undesirable warning: % from methods/src/eval.c _FIXME_
stopifnot(chooseZ(n,k) == factorialZ(n) / (factorialZ(k)*factorialZ(n-k)))
Factorize a number
Description
Give all primes numbers to factor the number
Usage
factorize(n)
Arguments
n |
Either integer, numeric or string value
(String value: ither starting with |
Details
The factorization function uses the Pollard Rho algorithm.
Value
Vector of class bigz.
Author(s)
Antoine Lucas
References
The GNU MP Library, see https://gmplib.org
Examples
factorize(34455342)
Format Numbers Keeping Classes Distinguishable
Description
Format (generalized) numbers in a way that their class
es
are distinguishable. Contrary to format()
which uses a
common format for all elements of x
, here, each entry is
formatted individually.
Usage
formatN(x, ...)
## Default S3 method:
formatN(x, ...)
## S3 method for class 'integer'
formatN(x, ...)
## S3 method for class 'double'
formatN(x, ...)
## S3 method for class 'bigz'
formatN(x, ...)
## S3 method for class 'bigq'
formatN(x, ...)
Arguments
x |
any R object, typically “number-like”. |
... |
potentially further arguments passed to methods. |
Value
a character vector of the same length
as x
,
each entry a representation of the corresponding entry in x
.
Author(s)
Martin Maechler
See Also
format
, including its (sophisticated) default method;
as.character
.
Examples
## Note that each class is uniquely recognizable from its output:
formatN( -2:5)# integer
formatN(0 + -2:5)# double precision
formatN(as.bigz(-2:5))
formatN(as.bigq(-2:5, 4))
Split Number into Fractional and Exponent of 2 Parts
Description
Breaks the number x
into its binary significand
(“fraction”) d \in [0.5, 1)
and ex
, the integral exponent for 2, such that
x = d \cdot 2^{ex}.
If x
is zero, both parts (significand and exponent) are zero.
Usage
frexpZ(x)
Arguments
x |
integer or big integer ( |
Value
a list
with the two components
d |
a numeric vector whose absolute values are either zero, or in
|
exp |
an integer vector of the same length;
note that |
Author(s)
Martin Maechler
See Also
log2
, etc; for bigz
objects built on
(the C++ equivalent of) frexp()
, actually GMP's
‘mpz_get_d_2exp()’.
Examples
frexpZ(1:10)
## and confirm :
with(frexpZ(1:10), d * 2^exp)
x <- rpois(1000, lambda=100) * (1 + rpois(1000, lambda=16))
X <- as.bigz(x)
stopifnot(all.equal(x, with(frexpZ(x), d* 2^exp)),
1+floor(log2(x)) == (fx <- frexpZ(x)$exp),
fx == frexpZ(X)$exp,
1+floor(log2(X)) == fx
)
Greatest Common Divisor (GCD) and Least Common Multiple (LCM)
Description
Compute the greatest common divisor (GCD) and least common multiple (LCM) of two (big) integers.
Usage
## S3 method for class 'bigz'
gcd(a, b)
lcm.bigz(a, b)
Arguments
a , b |
Either integer, numeric, |
Value
An element of class bigz
Author(s)
Antoine Lucas
References
The GNU MP Library, see https://gmplib.org
See Also
Examples
gcd.bigz(210,342) # or also
lcm.bigz(210,342)
a <- 210 ; b <- 342
stopifnot(gcd.bigz(a,b) * lcm.bigz(a,b) == a * b)
## or
(a <- as.bigz("82696155787249022588"))
(b <- as.bigz("65175989479756205392"))
gcd(a,b) # 4
stopifnot(gcd(a,b) * lcm.bigz(a,b) == a * b)
Compute Bezoult Coefficient
Description
Compute g,s,t as
as + bt = g = gcd(a,b)
.
s and t are also known as Bezoult coefficients.
Usage
gcdex(a, b)
Arguments
a , b |
either integer, numeric, character string, or of class |
Value
a class "bigz"
vector of length 3 with (long integer) values
g, s, t
.
Author(s)
Antoine Lucas
References
The GNU MP Library, see https://gmplib.org
See Also
Examples
gcdex(342,654)
Base Functions in 'gmp'-ified Versions
Description
Functions from base etc which need a copy in the gmp namespace so they correctly dispatch.
Usage
outer(X, Y, FUN = "*", ...)
Arguments
X , Y , FUN , ... |
See base package help: |
See Also
Examples
twop <- as.bigz(2)^(99:103)
(mtw <- outer(twop, 0:2))
stopifnot(
identical(dim(mtw), as.integer(c(5,3)))
,
mtw[,1] == 0
,
identical(as.vector(mtw[,2]), twop)
)
GMP Number Utilities
Description
gmpVersion()
returns the version of the GMP library which
gmp is currently linked to.
Usage
gmpVersion()
References
The GNU MP Library, see https://gmplib.org
Examples
gmpVersion()
Whole ("Integer") Numbers
Description
Check which elements of x[]
are integer valued aka
“whole” numbers.
Usage
is.whole(x)
## Default S3 method:
is.whole(x)
## S3 method for class 'bigz'
is.whole(x)
## S3 method for class 'bigq'
is.whole(x)
Arguments
x |
any R vector |
Value
logical vector of the same length as x
, indicating where
x[.]
is integer valued.
Author(s)
Martin Maechler
See Also
is.integer(x)
(base package) checks for the
internal mode or class; not if x[i]
are integer valued.
The is.whole()
method for "mpfr" numbers.
Examples
is.integer(3) # FALSE, it's internally a double
is.whole(3) # TRUE
## integer valued complex numbers (two FALSE) :
is.whole(c(7, 1 + 1i, 1.2, 3.4i, 7i))
is.whole(factorialZ(20)^(10:12)) ## "bigz" are *always* whole numbers
q <- c(as.bigz(36)^50 / as.bigz(30)^40, 3, factorialZ(30:31), 12.25)
is.whole(q) # F T T T F
Determine if number is (very probably) prime
Description
Determine whether the number n
is prime or not, with
three possible answers:
- 2:
n
is prime,- 1:
n
is probably prime (without beeing certain),- 0:
n
is composite.
Usage
isprime(n, reps = 40)
Arguments
n |
integer number, to be tested. |
reps |
integer number of primality testing repeats. |
Details
This function does some trial divisions, then some Miller-Rabin
probabilistic primary tests. reps
controls how many such tests are
done, 5 to 10 is already a resonable number. More will reduce the chances
of a composite being returned as “probably prime”.
Value
0 |
|
1 |
|
2 |
|
Author(s)
Antoine Lucas
References
The GNU MP Library, see https://gmplib.org
See Also
Note that for “small” n
, which means something like
n < 10'000'000
, non-probabilistic methods (such as
factorize()
) are fast enough.
Examples
isprime(210)
isprime(71)
# All primes numbers from 1 to 100
t <- isprime(1:99)
(1:99)[t > 0]
table(isprime(1:10000))# 0 and 2 : surely prime or not prime
primes <- function(n) {
## all primes <= n
stopifnot(length(n) == 1, n <= 1e7) # be reasonable
p <- c(2L, as.integer(seq(3, n, by=2)))
p[isprime(p) > 0]
}
## quite quickly, but for these small numbers
## still slower than e.g., sfsmisc::primes()
system.time(p100k <- primes(100000))
## The first couple of Mersenne primes:
p.exp <- primes(1000)
Mers <- as.bigz(2) ^ p.exp - 1
isp.M <- sapply(seq_along(Mers), function(i) isprime(Mers[i], reps=256))
cbind(p.exp, isp.M)[isp.M > 0,]
Mers[isp.M > 0]
Compute Fibonacci and Lucas numbers
Description
fibnum compute n-th Fibonacci number. fibnum2 compute (n-1)-th and n-th Fibonacci number. lucnum compute n-th lucas number. lucnum2 compute (n-1)-th and n-th lucas number.
Fibonacci numbers are define by: F_n=F_{n-1}+F_{n-2}
Lucas numbers are define by: L_n=F_n+2F_{n-1}
Usage
fibnum(n)
fibnum2(n)
lucnum(n)
lucnum2(n)
Arguments
n |
Integer |
Value
Fibonacci numbers and Lucas number.
Author(s)
Antoine Lucas
References
The GNU MP Library, see https://gmplib.org
Examples
fibnum(10)
fibnum2(10)
lucnum(10)
lucnum2(10)
Matrix manipulation with gmp
Description
Overload of “all” standard tools useful for matrix manipulation adapted to large numbers.
Usage
## S3 method for class 'bigz'
matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL, mod = NA,...)
is.matrixZQ(x)
## S3 method for class 'bigz'
x %*% y
## S3 method for class 'bigq'
x %*% y
## S3 method for class 'bigq'
crossprod(x, y=NULL,...)
## S3 method for class 'bigz'
tcrossprod(x, y=NULL,...)
## S3 method for class 'bigz'
cbind(..., deparse.level=1)
## S3 method for class 'bigq'
rbind(..., deparse.level=1)
## ..... etc
Arguments
data |
an optional data vector |
nrow |
the desired number of rows |
ncol |
the desired number of columns |
byrow |
logical. If |
dimnames |
not implemented for |
mod |
optional modulus (when |
x , y |
numeric, |
... , deparse.level |
arguments from the generic; not made use of, i.e., disregarded here. |
Details
The extract function ("["
) is the same use for vector or
matrix. Hence, x[i]
returns the same values as x[i,]
.
This is not considered a feature and may be changed in the future
(with warnings).
All matrix multiplications should work as with numeric matrices.
Special features concerning the "bigz"
class: the
modulus can be
- Unset:
Just play with large numbers
- Set with a vector of size 1:
Example:
matrix.bigz(1:6,nrow=2,ncol=3,mod=7)
This means you work inZ/nZ
, for the whole matrix. It is the only case where the%*%
andsolve
functions will work inZ/nZ
.- Set with a vector smaller than data:
Example:
matrix.bigz(1:6,nrow=2,ncol=3,mod=1:5)
. Then, the modulus is repeated to the end of data. This can be used to define a matrix with a different modulus at each row.- Set with same size as data:
Modulus is defined for each cell
Value
matrix()
: A matrix of class "bigz"
or "bigq"
.
is.matrixZQ()
: TRUE
or FALSE
.
dim()
, ncol()
, etc: integer or NULL
, as for
simple matrices.
cbind(x,y,...)
and rbind(x,y,...)
now (2024-01, since
gmp version 0.9-5), do drop deparse.level=.
instead of
wrongly creating an extra column or row and the "bigz"
method takes all arguments into account and calls the "bigq"
method in case of arguments inheriting from "bigq"
.
Author(s)
Antoine Lucas and Martin Maechler
See Also
Solving a linear system: solve.bigz
.
matrix
Examples
V <- as.bigz(v <- 3:7)
crossprod(V)# scalar product
(C <- t(V))
stopifnot(dim(C) == dim(t(v)), C == v,
dim(t(C)) == c(length(v), 1),
crossprod(V) == sum(V * V),
tcrossprod(V) == outer(v,v),
identical(C, t(t(C))),
is.matrixZQ(C), !is.matrixZQ(V), !is.matrixZQ(5)
)
## a matrix
x <- diag(1:4)
## invert this matrix
(xI <- solve(x))
## matrix in Z/7Z
y <- as.bigz(x,7)
## invert this matrix (result is *different* from solve(x)):
(yI <- solve(y))
stopifnot(yI %*% y == diag(4),
y %*% yI == diag(4))
## matrix in Q
z <- as.bigq(x)
## invert this matrix (result is the same as solve(x))
(zI <- solve(z))
stopifnot(abs(zI - xI) <= 1e-13,
z %*% zI == diag(4),
identical(crossprod(zI), zI %*% t(zI))
)
A <- matrix(2^as.bigz(1:12), 3,4)
for(a in list(A, as.bigq(A, 16), factorialZ(20), as.bigq(2:9, 3:4))) {
a.a <- crossprod(a)
aa. <- tcrossprod(a)
stopifnot(identical(a.a, crossprod(a,a)),
identical(a.a, t(a) %*% a)
,
identical(aa., tcrossprod(a,a)),
identical(aa., a %*% t(a))
)
}# {for}
Modulus of a Big Integer
Description
The modulus of a bigz
number a
is
“unset” when a
is a regular integer, a \in Z
).
Or the modulus can be set to m
which means
a \in Z/\,m\cdot Z
), i.e., all arithmetic with
a
is performed ‘modulo m’.
Usage
modulus(a)
modulus(a) <- value
Arguments
a |
R object of class |
value |
integer number or object of class |
Examples
x <- as.bigz(24)
modulus(x) # NULL, i.e. none
# x element of Z/31Z :
modulus(x) <- 31
x+x # 48 |-> (17 %% 31)
10*x # 240 |-> (23 %% 31)
x31 <- x
# reset modulus to "none":
modulus(x) <- NA; x; x. <- x
x <- x31
modulus(x) <- NULL; x
stopifnot(identical(x, as.bigz(24)), identical(x, x.),
identical(modulus(x31), as.bigz(31)))
Exported function for mpfr use
Description
Theses hidden function are provided for mpfr use. Use theses function with care.
Usage
.as.bigz(a, mod=NA)
Arguments
a |
either If character: the strings either start with |
mod |
an integer, numeric, string or bigz of the internal modulus, see below. |
Value
An R object of (S3) class "bigz"
, representing the argument
(x
or a
).
References
The GNU MP Library, see https://gmplib.org
Examples
.as.bigz(1)
Next Prime Number
Description
Return the next prime number, say p
, with p > n
.
Usage
nextprime(n)
Arguments
n |
Integer |
Details
This function uses probabilistic algorithm to identify primes. For practical purposes, it is adequate, the chance of a composite passing will be extremely small.
Value
A (probably) prime number
Author(s)
Antoine Lucas
References
The GNU MP Library, see https://gmplib.org
See Also
isprime
and its references and examples.
Examples
nextprime(14)
## still very fast:
(p <- nextprime(1e7))
## to be really sure { isprime() gives "probably prime" } :
stopifnot(identical(p, factorize(p)))
RFC 2409 Oakley Groups - Parameters for Diffie-Hellman Key Exchange
Description
RFC 2409 standardizes global unique prime numbers and generators for the purpose of secure asymmetric key exchange on the Internet.
Usage
data(Oakley1)
data(Oakley2)
Value
Oakley1 returns an object of class bigz
for a 768 bit Diffie-Hellman group. The generator is stored as value with the respective prime number as modulus attribute.
Oakley2 returns an object of class bigz
for a 1024 bit Diffie-Hellman group. The generator is stored as value with the respective prime number as modulus attribute.
References
The Internet Key Exchange (RFC 2409), Nov. 1998
Examples
packageDescription("gmp") # {possibly useful for debugging}
data(Oakley1)
(M1 <- modulus(Oakley1))
isprime(M1)# '1' : "probably prime"
sizeinbase(M1)# 232 digits (was 309 in older version)
Exponentiation function
Description
This function return x ^ y mod n
.
This function return x ^ y mod n
pow.bigz do the same when modulus is set.
Usage
powm(x, y, n)
Arguments
x |
Integer or big integer - possibly a vector |
y |
Integer or big integer - possibly a vector |
n |
Integer or big integer - possibly a vector |
Value
A bigz class representing the parameter value.
Author(s)
A. L.
See Also
Examples
powm(4,7,9)
x = as.bigz(4,9)
x ^ 7
Generate a random number
Description
Generate a uniformly distributed random number in the range 0 to
2^{size} -1
, inclusive.
Usage
urand.bigz(nb=1,size=200, seed = 0)
Arguments
nb |
Integer: number of random numbers to be generated (size of vector returned) |
size |
Integer: number will be generated in the range 0 to
|
seed |
Bigz: random seed initialisation |
Value
A biginteger of class bigz.
Author(s)
Antoine Lucas
References
‘mpz\_urandomb’ from the GMP Library, see https://gmplib.org
Examples
# Integers are differents
urand.bigz()
urand.bigz()
urand.bigz()
# Integers are the same
urand.bigz(seed="234234234324323")
urand.bigz(seed="234234234324323")
# Vector
urand.bigz(nb=50,size=30)
Relational Operators
Description
Binary operators which allow the comparison of values in atomic vectors.
Usage
## S3 method for class 'bigz'
sign(x)
## S3 method for class 'bigz'
e1 == e2
## S3 method for class 'bigz'
e1 < e2
## S3 method for class 'bigz'
e1 >= e2
Arguments
x , e1 , e2 |
R object (vector or matrix-like) of class |
See Also
mod.bigz
for arithmetic operators.
Examples
x <- as.bigz(8000)
x ^ 300 < 2 ^x
sign(as.bigz(-3:3))
sign(as.bigq(-2:2, 7))
Rounding Big Rationals ("bigq") to Decimals
Description
Rounding big rationals (of class "bigq"
, see as.bigq()
)
to decimal digits
is strictly based on a (optionally choosable)
definition of rounding to integer, i.e., digits = 0
, the default
method of which we provide as round0()
.
The users typically just call round(x, digits)
as elsewhere, and
the round()
method will call round(x, digits, round0=round0)
.
Usage
round0(x)
roundQ(x, digits = 0, r0 = round0)
## S3 method for class 'bigq'
round(x, digits = 0)
Arguments
x |
vector of big rationals, i.e., of |
digits |
integer number of decimal digits to round to. |
r0 |
a |
Value
round0()
returns a vector of big integers, i.e., "bigz"
classed.
roundQ(x, digits, round0)
returns a vector of big rationals,
"bigq"
, as x
.
round.bigq
is very simply defined as
function(x, digits) roundQ(x, digits)
.
Author(s)
Martin Maechler, ETH Zurich
References
The vignette “Exact Decimal Rounding via Rationals” from CRAN package round,
Wikipedia, Rounding, notably "Round half to even": https://en.wikipedia.org/wiki/Rounding#Round_half_to_even
See Also
round
for (double precision) numbers in base R;
roundX
from CRAN package round.
Examples
qq <- as.bigq((-21:31), 10)
noquote(cbind(as.character(qq), asNumeric(qq)))
round0(qq) # Big Integer ("bigz")
## corresponds to R's own "round to even" :
stopifnot(round0(qq) == round(asNumeric(qq)))
round(qq) # == round(qq, 0): the same as round0(qq) *but* Big Rational ("bigq")
halfs <- as.bigq(1,2) + -5:12
## round0() is simply
round0 <- function (x) {
nU <- as.bigz.bigq(xU <- x + as.bigq(1, 2)) # traditional round: .5 rounded up
if(any(I <- is.whole.bigq(xU))) { # I <==> x == <n>.5 : "hard case"
I[I] <- .mod.bigz(nU[I], 2L) == 1L # rounded up is odd ==> round *down*
nU[I] <- nU[I] - 1L
}
nU
}
## 's' for simple: rounding as you learned in school:
round0s <- function(x) as.bigz.bigq(x + as.bigq(1, 2))
cbind(halfs, round0s(halfs), round0(halfs))
## roundQ() is simply
roundQ <- function(x, digits = 0, r0 = round0) {
## round(x * 10^d) / 10^d -- vectorizing in both (x, digits)
p10 <- as.bigz(10) ^ digits # class: if(all(digits >= 0)) "bigz" else "bigq"
r0(x * p10) / p10
}
Compute size of a bigz in a base
Description
Return an approximation to the number of character the integer X would have printed in base b. The approximation is never too small.
In case of powers of 2, function gives exact result.
Usage
sizeinbase(a, b=10)
Arguments
a |
big integer, i.e. |
b |
base |
Value
integer of the same length as a
: the size, i.e. number of
digits, of each a[i]
.
Author(s)
Antoine Lucas
References
The GNU MP Library, see https://gmplib.org
Examples
sizeinbase(342434, 10)# 6 obviously
Iv <- as.bigz(2:7)^500
sizeinbase(Iv)
stopifnot(sizeinbase(Iv) == nchar(as.character(Iv)),
sizeinbase(Iv, b=16) == nchar(as.character(Iv, b=16)))
Solve a system of equation
Description
This generic function solves the equation a \%*\% x = b
for
x
, where b
can be either a vector or a matrix.
If a and b are rational, return is a rational matrix.
If a and b are big integers (of class bigz) solution is in Z/nZ if there is a common modulus, or a rational matrix if not.
Usage
## S3 method for class 'bigz'
solve(a, b, ...)
## S3 method for class 'bigq'
solve(a, b, ...)
Arguments
a , b |
A element of class bigz or bigq |
... |
Unused |
Details
It uses the Gauss and trucmuch algo ... (to be detailled).
Value
If a and b are rational, return is a rational matrix.
If a and b are big integers (of class bigz) solution is in Z/nZ if there is a common modulus, of a rational matrix if not.
Author(s)
Antoine Lucas
See Also
Examples
x <- matrix(1:4,2,2) ## standard solve :
solve(x)
q <- as.bigq(x) ## solve with rational
solve(q)
z <- as.bigz(x)
modulus(z) <- 7 ## solve in Z/7Z :
solve(z)
b <- c(1,3)
solve(q,b)
solve(z,b)
## Inversion of ("non-trivial") rational matrices :
A <- rbind(c(10, 1, 3),
c( 4, 2, 10),
c( 1, 8, 2))
(IA.q <- solve(as.bigq(A))) # fractions..
stopifnot(diag(3) == A %*% IA.q)# perfect
set.seed(5); B <- matrix(round(9*runif(5^2, -1,1)), 5)
B
(IB.q <- solve(as.bigq(B)))
stopifnot(diag(5) == B %*% IB.q, diag(5) == IB.q %*% B,
identical(B, asNumeric(solve(IB.q))))
Eulerian and Stirling Numbers of First and Second Kind
Description
Compute Eulerian numbers and Stirling numbers of the first and second
kind, possibly vectorized for all k
“at once”.
Usage
Stirling1(n, k)
Stirling2(n, k, method = c("lookup.or.store", "direct"))
Eulerian (n, k, method = c("lookup.or.store", "direct"))
Stirling1.all(n)
Stirling2.all(n)
Eulerian.all (n)
Arguments
n |
positive integer ( |
k |
integer in |
method |
for |
Details
Eulerian numbers:
A(n,k) =
the number of permutations of 1,2,...,n with exactly k
ascents (or exactly k
descents).
Stirling numbers of the first kind:
s(n,k) = (-1)^{n-k}
times
the number of permutations of 1,2,...,n with exactly k cycles.
Stirling numbers of the second kind:
S^{(k)}_n
is the number of ways of partitioning a set
of n
elements into k
non-empty subsets.
Value
A(n,k)
, s(n,k)
or S(n,k) = S^{(k)}_n
, respectively.
Eulerian.all(n)
is the same as sapply(0:(n-1), Eulerian, n=n)
(for n > 0
),
Stirling1.all(n)
is the same as sapply(1:n, Stirling1, n=n)
,
and
Stirling2.all(n)
is the same as sapply(1:n, Stirling2, n=n)
,
but more efficient.
Note
For typical double precision arithmetic,
Eulerian*(n, *)
overflow (to Inf
) for n \ge 172
,
Stirling1*(n, *)
overflow (to \pm
Inf
) for n \ge 171
, and
Stirling2*(n, *)
overflow (to Inf
) for n \ge 220
.
Author(s)
Martin Maechler ("direct": May 1992)
References
Eulerians:
NIST Digital Library of Mathematical Functions, 26.14: https://dlmf.nist.gov/26.14
Stirling numbers:
Abramowitz and Stegun 24,1,4 (p. 824-5 ; Table 24.4, p.835); Closed Form : p.824 "C."
NIST Digital Library of Mathematical Functions, 26.8: https://dlmf.nist.gov/26.8
See Also
chooseZ
for the binomial coefficients.
Examples
Stirling1(7,2)
Stirling2(7,3)
stopifnot(
Stirling1.all(9) == c(40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1)
,
Stirling2.all(9) == c(1, 255, 3025, 7770, 6951, 2646, 462, 36, 1)
,
Eulerian.all(7) == c(1, 120, 1191, 2416, 1191, 120, 1)
)