Type: | Package |
Title: | Prediction Intervals for Random-Effects Meta-Analysis |
Version: | 1.1.3 |
Description: | An implementation of prediction intervals for random-effects meta-analysis: Higgins et al. (2009) <doi:10.1111/j.1467-985X.2008.00552.x>, Partlett and Riley (2017) <doi:10.1002/sim.7140>, and Nagashima et al. (2019) <doi:10.1177/0962280218773520>, <doi:10.48550/arXiv.1804.01054>. |
Depends: | R (≥ 3.2.0) |
Imports: | stats, Rcpp (≥ 1.0.2), ggplot2 (≥ 3.2.1), scales (≥ 1.0.0), utils |
Suggests: | knitr, rmarkdown |
LinkingTo: | Rcpp, RcppEigen |
License: | GPL-3 |
Encoding: | UTF-8 |
VignetteBuilder: | knitr |
RoxygenNote: | 6.1.1 |
NeedsCompilation: | yes |
Packaged: | 2019-09-17 09:08:52 UTC; nshi1 |
Author: | Kengo Nagashima |
Maintainer: | Kengo Nagashima <nshi1201@gmail.com> |
Repository: | CRAN |
Date/Publication: | 2019-09-17 10:10:02 UTC |
Prediction Intervals for Random-Effects Meta-Analysis
Description
Prediction Intervals for Random-Effects Meta-Analysis
Author(s)
Kengo Nagashima, Hisashi Noma, and Toshi A. Furukawa
Calculating Confidence Intervals
Description
This function calculates confidence intervals.
Usage
cima(y, se, v = NULL, alpha = 0.05, method = c("boot", "DL", "HK",
"SJ", "KR", "APX", "PL", "BC"), B = 25000, parallel = FALSE,
seed = NULL, maxit1 = 1e+05, eps = 10^(-10), lower = 0,
upper = 1000, maxit2 = 1000, tol = .Machine$double.eps^0.25,
rnd = NULL, maxiter = 100)
Arguments
y |
the effect size estimates vector |
se |
the within studies standard errors vector |
v |
the within studies variance estimates vector |
alpha |
the alpha level of the prediction interval |
method |
the calculation method for the pretiction interval (default = "boot").
|
B |
the number of bootstrap samples |
parallel |
the number of threads used in parallel computing, or FALSE that means single threading |
seed |
set the value of random seed |
maxit1 |
the maximum number of iteration for the exact distribution function of |
eps |
the desired level of accuracy for the exact distribution function of |
lower |
the lower limit of random numbers of |
upper |
the lower upper of random numbers of |
maxit2 |
the maximum number of iteration for numerical inversions |
tol |
the desired level of accuracy for numerical inversions |
rnd |
a vector of random numbers from the exact distribution of |
maxiter |
the maximum number of iteration for REML estimation |
Details
Excellent reviews of heterogeneity variance estimation have been published (e.g., Veroniki, et al., 2018).
Value
-
K
: the number of studies. -
muhat
: the average treatment effect estimate\hat{\mu}
. -
lci
,uci
: the lower and upper confidence limits\hat{\mu}_l
and\hat{\mu}_u
. -
tau2h
: the estimate for\tau^2
. -
i2h
: the estimate forI^2
. -
nuc
: degrees of freedom for the confidence interval. -
vmuhat
: the variance estimate for\hat{\mu}
.
References
Veroniki, A. A., Jackson, D., Bender, R., Kuss, O., Langan, D., Higgins, J. P. T., Knapp, G., and Salanti, J. (2016). Methods to calculate uncertainty in the estimated overall effect size from a random-effects meta-analysis Res Syn Meth. In press. https://doi.org/10.1002/jrsm.1319.
Nagashima, K., Noma, H., and Furukawa, T. A. (2018). Prediction intervals for random-effects meta-analysis: a confidence distribution approach. Stat Methods Med Res. In press. https://doi.org/10.1177/0962280218773520.
Higgins, J. P. T, Thompson, S. G., Spiegelhalter, D. J. (2009). A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 172(1): 137-159. https://doi.org/10.1111/j.1467-985X.2008.00552.x
Partlett, C, and Riley, R. D. (2017). Random effects meta-analysis: Coverage performance of 95 confidence and prediction intervals following REML estimation. Stat Med. 36(2): 301-317. https://doi.org/10.1002/sim.7140
Hartung, J., and Knapp, G. (2001). On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med. 20(12): 1771-1782. https://doi.org/10.1002/sim.791
Sidik, K., and Jonkman, J. N. (2006). Robust variance estimation for random effects meta-analysis. Comput Stat Data Anal. 50(12): 3681-3701. https://doi.org/10.1016/j.csda.2005.07.019
Noma H. (2011) Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections. Stat Med. 30(28): 3304-3312. https://doi.org/10.1002/sim.4350
See Also
Examples
data(sbp, package = "pimeta")
set.seed(20161102)
# Nagashima-Noma-Furukawa confidence interval
pimeta::cima(sbp$y, sbp$sigmak, seed = 3141592)
# A Wald-type t-distribution confidence interval
# An approximate variance estimator & DerSimonian-Laird estimator for tau^2
pimeta::cima(sbp$y, sbp$sigmak, method = "DL")
# A Wald-type t-distribution confidence interval
# The Hartung variance estimator & REML estimator for tau^2
pimeta::cima(sbp$y, sbp$sigmak, method = "HK")
# A Wald-type t-distribution confidence interval
# The Sidik-Jonkman variance estimator & REML estimator for tau^2
pimeta::cima(sbp$y, sbp$sigmak, method = "SJ")
# A Wald-type t-distribution confidence interval
# The Kenward-Roger approach & REML estimator for tau^2
pimeta::cima(sbp$y, sbp$sigmak, method = "KR")
# A Wald-type t-distribution confidence interval
# An approximate variance estimator & REML estimator for tau^2
pimeta::cima(sbp$y, sbp$sigmak, method = "APX")
# Profile likelihood confidence interval
# Maximum likelihood estimators of variance for the average effect & tau^2
pimeta::cima(sbp$y, sbp$sigmak, method = "PL")
# Profile likelihood confidence interval with a Bartlett-type correction
# Maximum likelihood estimators of variance for the average effect & tau^2
pimeta::cima(sbp$y, sbp$sigmak, method = "BC")
Converting binary data
Description
Converting binary outcome data to the effect size estimates and the within studies standard errors vector
Usage
convert_bin(m1, n1, m2, n2, type = c("logOR", "logRR", "RD"))
Arguments
m1 |
the number of successes in treatment group 1 |
n1 |
the number of patients in treatment group 1 |
m2 |
the number of successes in treatment group 2 |
n2 |
the number of patients in treatment group 2 |
type |
the outcome measure for binary outcome data (default = "logOR").
|
Details
This function implements methods for logarithmic odds ratio, logarithmic relative risk, and risk difference described in Hartung & Knapp (2001).
Value
-
y
: the effect size estimates vector. -
se
: the within studies standard errors vector.
References
Hartung, J., and Knapp, G. (2001). A refined method for the meta-analysis of controlled clinical trials with binary outcome. Stat Med. 20(24): 3875-3889. https://doi.org/10.1002/sim.1009
Examples
m1 <- c(15,12,29,42,14,44,14,29,10,17,38,19,21)
n1 <- c(16,16,34,56,22,54,17,58,14,26,44,29,38)
m2 <- c( 9, 1,18,31, 6,17, 7,23, 3, 6,12,22,19)
n2 <- c(16,16,34,56,22,55,15,58,15,27,45,30,38)
dat <- pimeta::convert_bin(m1, n1, m2, n2, type = "logOR")
pimeta::pima(dat$y, dat$se)
Hypertension data
Description
The hypertension data (Wang et al., 2005) included 7 studies comparing the treatment effect of anti-hypertensive treatment versus control on reducing diastolic blood pressure (DBP) in patients with hypertension. Negative estimates indicate the reduction of DBP in the anti-hypertensive treatment group.
Usage
data(hyp)
Format
A data frame with 10 rows and 2 variables
Details
-
y
: Standardized mean difference -
se
: Standard error -
label
: Labels for each study
References
Wang, J. G., Staessen, J. A., Franklin, S. S., Fagard, R., and Gueyffier, F. (2005). Systolic and diastolic blood pressure lowering as determinants of cardiovascular outcome. Hypertension. 45(5): 907-913. https://doi.org/10.1161/01.HYP.0000165020.14745.79
I^2
heterogeneity measure
Description
Returns the estimator for (Higgins & Thompson, 2002).
Usage
i2h(se, tau2h)
Arguments
se |
the within studies standard errors vector |
tau2h |
the estimate of |
Value
-
i2h
: the estimate forI^2
.
References
Higgins, J. P. T., and Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Stat Med. 21(11): 1539-1558. https://doi.org/10.1002/sim.1186
Examples
data(sbp, package = "pimeta")
tau2h <- pimeta::tau2h(sbp$y, sbp$sigmak)
pimeta::i2h(sbp$sigmak, tau2h$tau2h)
Pain data
Description
The pain data (Riley et al., 2011; Hauser et al., 2009) included 22 studies comparing the treatment effect of antidepressants on reducing pain in patients with fibromyalgia syndrome. The treatment effects were summarized using standardized mean differences on a visual analog scale for pain between the antidepressant group and control group. Negative estimates indicate the reduction of pain in the antidepressant group.
Usage
data(pain)
Format
A data frame with 22 rows and 2 variables
Details
-
y
: Standardized mean difference -
sigmak
: Standard error
References
Hauser, W., Bernardy, K, Uceyler, N., and Sommer, C. (2009). Treatment of fibromyalgia syndrome with antidepressants: a meta-analysis. JAMA. 301(2): 198-209. https://doi.org/10.1001/jama.2008.944
Riley, R. D., Higgins, J. P. T, and Deeks, J. J. (2011). Interpretation of random effects meta-analyses. BMJ. 342: d549. https://doi.org/10.1136/bmj.d549
Calculating Prediction Intervals
Description
This function can estimate prediction intervals (PIs) as follows: A parametric bootstrap PI based on confidence distribution (Nagashima et al., 2018). A parametric bootstrap confidence interval is also calculated based on the same sampling method for bootstrap PI. The Higgins–Thompson–Spiegelhalter (2009) prediction interval. The Partlett–Riley (2017) prediction intervals.
Usage
pima(y, se, v = NULL, alpha = 0.05, method = c("boot", "HTS", "HK",
"SJ", "KR", "CL", "APX"), B = 25000, parallel = FALSE, seed = NULL,
maxit1 = 1e+05, eps = 10^(-10), lower = 0, upper = 1000,
maxit2 = 1000, tol = .Machine$double.eps^0.25, rnd = NULL,
maxiter = 100)
Arguments
y |
the effect size estimates vector |
se |
the within studies standard error estimates vector |
v |
the within studies variance estimates vector |
alpha |
the alpha level of the prediction interval |
method |
the calculation method for the pretiction interval (default = "boot").
|
B |
the number of bootstrap samples |
parallel |
the number of threads used in parallel computing, or FALSE that means single threading |
seed |
set the value of random seed |
maxit1 |
the maximum number of iteration for the exact distribution function of |
eps |
the desired level of accuracy for the exact distribution function of |
lower |
the lower limit of random numbers of |
upper |
the upper limit of random numbers of |
maxit2 |
the maximum number of iteration for numerical inversions |
tol |
the desired level of accuracy for numerical inversions |
rnd |
a vector of random numbers from the exact distribution of |
maxiter |
the maximum number of iteration for REML estimation |
Details
The functions bootPI
, pima_boot
,
pima_hts
, htsdl
, pima_htsreml
, htsreml
are deprecated, and integrated to the pima
function.
Value
-
K
: the number of studies. -
muhat
: the average treatment effect estimate\hat{\mu}
. -
lci
,uci
: the lower and upper confidence limits\hat{\mu}_l
and\hat{\mu}_u
. -
lpi
,upi
: the lower and upper prediction limits\hat{c}_l
and\hat{c}_u
. -
tau2h
: the estimate for\tau^2
. -
i2h
: the estimate forI^2
. -
nup
: degrees of freedom for the prediction interval. -
nuc
: degrees of freedom for the confidence interval. -
vmuhat
: the variance estimate for\hat{\mu}
.
References
Higgins, J. P. T, Thompson, S. G., Spiegelhalter, D. J. (2009). A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 172(1): 137-159. https://doi.org/10.1111/j.1467-985X.2008.00552.x
Partlett, C, and Riley, R. D. (2017). Random effects meta-analysis: Coverage performance of 95 confidence and prediction intervals following REML estimation. Stat Med. 36(2): 301-317. https://doi.org/10.1002/sim.7140
Nagashima, K., Noma, H., and Furukawa, T. A. (2018). Prediction intervals for random-effects meta-analysis: a confidence distribution approach. Stat Methods Med Res. In press. https://doi.org/10.1177/0962280218773520.
Hartung, J. (1999). An alternative method for meta-analysis. Biom J. 41(8): 901-916. https://doi.org/10.1002/(SICI)1521-4036(199912)41:8<901::AID-BIMJ901>3.0.CO;2-W.
Hartung, J., and Knapp, G. (2001). On tests of the overall treatment effect in meta-analysis with normally distributed responses. Stat Med. 20(12): 1771-1782. https://doi.org/10.1002/sim.791.
Sidik, K., and Jonkman, J. N. (2006). Robust variance estimation for random effects meta-analysis. Comput Stat Data Anal. 50(12): 3681-3701. https://doi.org/10.1016/j.csda.2005.07.019.
Kenward, M. G., and Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics. 53(3): 983-997. https://www.ncbi.nlm.nih.gov/pubmed/9333350.
DerSimonian, R., and Laird, N. (1986). Meta-analysis in clinical trials. Control Clin Trials. 7(3): 177-188.
See Also
Examples
data(sbp, package = "pimeta")
# Nagashima-Noma-Furukawa prediction interval
# is sufficiently accurate when I^2 >= 10% and K >= 3
pimeta::pima(sbp$y, sbp$sigmak, seed = 3141592, parallel = 4)
# Higgins-Thompson-Spiegelhalter prediction interval and
# Partlett-Riley prediction intervals
# are accurate when I^2 > 30% and K > 25
pimeta::pima(sbp$y, sbp$sigmak, method = "HTS")
pimeta::pima(sbp$y, sbp$sigmak, method = "HK")
pimeta::pima(sbp$y, sbp$sigmak, method = "SJ")
pimeta::pima(sbp$y, sbp$sigmak, method = "KR")
pimeta::pima(sbp$y, sbp$sigmak, method = "APX")
Plot Results
Description
A function for plotting of 'cima' objects.
Usage
## S3 method for class 'cima'
plot(x, y = NULL, title = "Forest plot",
base_size = 16, base_family = "", digits = 3, studylabel = NULL,
ntick = NULL, trans = c("identity", "exp"), ...)
Arguments
x |
'cima' object to plot |
y |
is not used |
title |
graph title |
base_size |
base font size |
base_family |
base font family |
digits |
a value for digits specifies the minimum number of significant digits to be printed in values. |
studylabel |
labels for each study |
ntick |
the number of x-axis ticks |
trans |
transformation for logarithmic scale outcomes
( |
... |
further arguments passed to or from other methods. |
Examples
data(sbp, package = "pimeta")
ciex <- pimeta::cima(sbp$y, sbp$sigmak, method = "DL")
cairo_pdf("forestplot.pdf", width = 6, height = 3, family = "Arial")
plot(ciex, digits = 2, base_size = 10, studylabel = sbp$label)
dev.off()
Plot Results
Description
A function for plotting of 'pima' objects.
Usage
## S3 method for class 'pima'
plot(x, y = NULL, title = "Forest plot",
base_size = 16, base_family = "", digits = 3, studylabel = NULL,
ntick = NULL, trans = c("identity", "exp"), ...)
Arguments
x |
'pima' object to plot |
y |
is not used |
title |
graph title |
base_size |
base font size |
base_family |
base font family |
digits |
a value for digits specifies the minimum number of significant digits to be printed in values. |
studylabel |
labels for each study |
ntick |
the number of x-axis ticks |
trans |
transformation for logarithmic scale outcomes
( |
... |
further arguments passed to or from other methods. |
Examples
data(sbp, package = "pimeta")
piex <- pimeta::pima(sbp$y, sbp$sigmak, method = "HTS")
cairo_pdf("forestplot.pdf", width = 6, height = 3, family = "Arial")
plot(piex, digits = 2, base_size = 10, studylabel = sbp$label)
dev.off()
Print Results
Description
print
prints its argument and returns it invisibly (via invisible(x)
).
Usage
## S3 method for class 'cima'
print(x, digits = 4, trans = c("identity", "exp"), ...)
Arguments
x |
print to display |
digits |
a value for digits specifies the minimum number of significant digits to be printed in values. |
trans |
transformation for logarithmic scale outcomes
( |
... |
further arguments passed to or from other methods. |
Print Results
Description
print
prints its argument and returns it invisibly (via invisible(x)
).
Usage
## S3 method for class 'pima'
print(x, digits = 4, trans = c("identity", "exp"), ...)
Arguments
x |
print to display |
digits |
a value for digits specifies the minimum number of significant digits to be printed in values. |
trans |
transformation for logarithmic scale outcomes
( |
... |
further arguments passed to or from other methods. |
Print Results
Description
print
prints its argument and returns it invisibly (via invisible(x)
).
Usage
## S3 method for class 'pima_tau2h'
print(x, digits = 3, ...)
Arguments
x |
print to display |
digits |
a value for digits specifies the minimum number of significant digits to be printed in values. |
... |
further arguments passed to or from other methods. |
The Distribution of a Positive Linear Combination of Chiqaure Random Variables
Description
The cumulative distribution function for the distribution of a positive linear
combination of \chi^2
random variables with the weights
(\lambda_1, \ldots, \lambda_K
), degrees of freedom
(\nu_1, \ldots, \nu_K
), and non-centrality parameters
(\delta_1, \ldots, \delta_K
).
Usage
pwchisq(x, lambda = 1, nu = 1, delta = 0, mode = 1,
maxit1 = 1e+05, eps = 10^(-10))
Arguments
x |
numeric; value of x > 0 ( |
lambda |
numeric vector; weights ( |
nu |
integer vector; degrees of freedom ( |
delta |
numeric vector; non-centrality parameters ( |
mode |
numeric; the mode of calculation (see Farabrother, 1984) |
maxit1 |
integer; the maximum number of iteration. |
eps |
numeric; the desired level of accuracy. |
Value
-
prob
: the distribution function.
References
Farebrother, R. W. (1984).
Algorithm AS 204: the distribution of a positive linear combination of
\chi^2
random variables.
J R Stat Soc Ser C Appl Stat.
33(3): 332–339.
https://rss.onlinelibrary.wiley.com/doi/10.2307/2347721.
Examples
# Table 1 of Farabrother (1984)
# Q6 (The taget values are 0.0061, 0.5913, and 0.9779)
pimeta::pwchisq( 20, lambda = c(7,3), nu = c(6,2), delta = c(6,2))
pimeta::pwchisq(100, lambda = c(7,3), nu = c(6,2), delta = c(6,2))
pimeta::pwchisq(200, lambda = c(7,3), nu = c(6,2), delta = c(6,2))
# [1] 0.006117973
# [1] 0.5913421
# [1] 0.9779184
Systolic blood pressure (SBP) data
Description
Riley et al. (2011) analyzed a hypothetical meta-analysis. They generated a data set of 10 studies examining the same antihypertensive drug. Negative estimates suggested reduced blood pressure in the treatment group.
Usage
data(sbp)
Format
A data frame with 10 rows and 2 variables
Details
-
y
: Standardized mean difference -
sigmak
: Standard error -
label
: Labels for each generated study
References
Riley, R. D., Higgins, J. P. T, and Deeks, J. J. (2011). Interpretation of random effects meta-analyses. BMJ. 342: d549. https://doi.org/10.1136/bmj.d549
Set-shifting data
Description
Higgins et al. (2009) re-analyzed data (Roberts et al., 2007) that included 14 studies evaluating the set-shifting ability in people with eating disorders by using a prediction interval. Standardized mean differences in the time taken to complete Trail Making Test between subjects with eating disorders and healthy controls were collected. Positive estimates indicate impairment in set shifting ability in people with eating disorders.
Usage
data(setshift)
Format
A data frame with 14 rows and 2 variables
Details
-
y
: Standardized mean difference -
sigmak
: Standard error
References
Roberts, M. E., Tchanturia, K., Stahl, D., Southgate, L., and Treasure, J. (2007). A systematic review and meta-analysis of set-shifting ability in eating disorders. Psychol Med. 37(8): 1075-1084. https://doi.org/10.1017/S0033291707009877
Higgins, J. P. T, Thompson, S. G., Spiegelhalter, D. J. (2009). A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A Stat Soc. 172(1): 137-159. https://doi.org/10.1111/j.1467-985X.2008.00552.x
Calculating Heterogeneity Variance
Description
Returns a heterogeneity variance estimate and its confidence interval.
Usage
tau2h(y, se, maxiter = 100, method = c("DL", "VC", "PM", "HM", "HS",
"ML", "REML", "AREML", "SJ", "SJ2", "EB", "BM"), methodci = c(NA, "ML",
"REML"), alpha = 0.05)
Arguments
y |
the effect size estimates vector |
se |
the within studies standard errors vector |
maxiter |
the maximum number of iterations |
method |
the calculation method for heterogeneity variance (default = "DL").
|
methodci |
the calculation method for a confidence interval of heterogeneity variance (default = NA).
|
alpha |
the alpha level of the confidence interval |
Details
Excellent reviews of heterogeneity variance estimation have been published (Sidik & Jonkman, 2007; Veroniki, et al., 2016; Langan, et al., 2018).
Value
-
tau2h
: the estimate for\tau^2
. -
lci
,uci
: the lower and upper confidence limits\hat{\tau}^2_l
and\hat{\tau}^2_u
.
References
Sidik, K., and Jonkman, J. N. (2007). A comparison of heterogeneity variance estimators in combining results of studies. Stat Med. 26(9): 1964-1981. https://doi.org/10.1002/sim.2688.
Veroniki, A. A., Jackson, D., Viechtbauer, W., Bender, R., Bowden, J., Knapp, G., Kuss, O., Higgins, J. P. T., Langan, D., and Salanti, J. (2016). Methods to estimate the between-study variance and its uncertainty in meta-analysis. Res Syn Meth. 7(1): 55-79. https://doi.org/10.1002/jrsm.1164.
Langan, D., Higgins, J. P. T., Jackson, D., Bowden, J., Veroniki, A. A., Kontopantelis, E., Viechtbauer, W., and Simmonds, M. (2018). A comparison of heterogeneity variance estimators in simulated random-effects meta-analyses. Res Syn Meth. In press. https://doi.org/10.1002/jrsm.1316.
DerSimonian, R., and Laird, N. (1986). Meta-analysis in clinical trials. Control Clin Trials. 7(3): 177-188. https://doi.org/10.1016/0197-2456(86)90046-2.
Hedges, L. V. (1983). A random effects model for effect sizes. Psychol Bull. 93(2): 388-395. https://doi.org/10.1037/0033-2909.93.2.388.
Paule, R. C., and Mandel, K. H. (1982). Consensus values and weighting factors. J Res Natl Inst Stand Techno. 87(5): 377-385. https://doi.org/10.6028/jres.087.022.
Hartung, J., and Makambi, K. H. (2003). Reducing the number of unjustified significant results in meta-analysis. Commun Stat Simul Comput. 32(4): 1179-1190. https://doi.org/10.1081/SAC-120023884.
Hunter, J. E., and Schmidt, F. L. (2004). Methods of Meta-Analysis: Correcting Error and Bias in Research Findings. 2nd edition. Sage Publications, Inc.
Viechtbauer, W. (2005). Bias and efficiency of meta-analytic variance estimators in the random-effects model. J Educ Behav Stat. 30(3): 261-293. https://doi.org/10.3102/10769986030003261.
Thompson, S. G., and Sharp, S. J. (1999). Explaining heterogeneity in meta-analysis: a comparison of methods. Stat Med. 18(20): 2693-2708. https://doi.org/10.1002/(SICI)1097-0258(19991030)18:20<2693::AID-SIM235>3.0.CO;2-V.
Sidik, K., and Jonkman, J. N. (2005). Simple heterogeneity variance estimation for meta-analysis. J R Stat Soc Ser C Appl Stat. 54(2): 367-384. https://doi.org/10.1111/j.1467-9876.2005.00489.x.
Morris, C. N. (1983). Parametric empirical Bayes inference: theory and applications. J Am Stat Assoc. 78(381): 47-55. https://doi.org/10.1080/01621459.1983.10477920.
Chung, Y. L., Rabe-Hesketh, S., and Choi, I-H. (2013). Avoiding zero between-study variance estimates in random-effects meta-analysis. Stat Med. 32(23): 4071-4089. https://doi.org/10.1002/sim.5821.
Biggerstaff, B. J., and Tweedie, R. L. (1997). Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Stat Med. 16(7): 753-768. https://doi.org/10.1002/(SICI)1097-0258(19970415)16:7<753::AID-SIM494>3.0.CO;2-G.
Examples
data(sbp, package = "pimeta")
pimeta::tau2h(sbp$y, sbp$sigmak)